We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




MIT Researchers Develop AI Tool That Compares 3D Scans

By MedImaging International staff writers
Posted on 26 Jun 2018
Print article
Image: The VoxelMorph algorithm is designed to register brain scans and other 3D images more than 1,000 times more quickly using novel learning techniques (Photo courtesy of MIT).
Image: The VoxelMorph algorithm is designed to register brain scans and other 3D images more than 1,000 times more quickly using novel learning techniques (Photo courtesy of MIT).
A team of researchers from the Massachusetts Institute of Technology (Cambridge, MA, USA) have submitted a pair of conference papers describing a machine-learning algorithm that can register brain scans and other 3D images more than 1,000 times more quickly using novel learning techniques. The algorithm works by “learning” while registering thousands of pairs of images and acquiring information during this process about how to align the images and estimating some optimal alignment parameters. After training, the algorithm uses those parameters to map all pixels of one image to another simultaneously. This reduces registration time to a minute or two using a normal computer, or less than a second using a GPU with accuracy similar to state-of-the-art systems.

In order to analyze variations in brain structures in patients with a particular disease or condition, neuroscientists often use the medical image registration technique. This involves overlaying two images, such as magnetic resonance imaging (MRI) scans, to compare and analyze the anatomical differences in great detail. However, this process usually takes two hours or more, as traditional systems meticulously align each of potentially a million pixels in the combined scans. Since MRI scans are basically hundreds of stacked 2D images that form massive 3D images, called “volumes,” containing a million or more 3D pixels, called “voxels,” it can be highly time-consuming to align all voxels in the first volume with those in the second. Additionally, scans coming from different machines and having different spatial orientations can make matching voxels even more computationally complex.

The researchers’ algorithm, called “VoxelMorph,” is powered by a convolutional neural network (CNN), a machine-learning approach commonly used for image processing. These networks consist of several nodes that process image and other information across various layers of computation. The researchers trained their algorithm on 7,000 publicly available MRI brain scans and then tested it on 250 additional scans. During training, the researchers fed the brain scans into the algorithm in pairs. Using a CNN and modified computation layer called a spatial transformer, the method captures similarities of voxels in one MRI scan with voxels in the other scan. This allows the algorithm to learn information about groups of voxels, such as anatomical shapes common to both scans, which it uses to calculate optimized parameters that can be applied to any scan pair.

When two new scans are fed into the algorithm, a simple mathematical “function” uses those optimized parameters to rapidly calculate the exact alignment of every voxel in both scans. Thus, the algorithm’s CNN component gains all the necessary information during training so that, during each new registration, the entire registration can be executed using one, easily computable function evaluation. The researchers found that their algorithm could accurately register all of their 250 test brain scans – those registered after the training set – within two minutes using a traditional central processing unit, and in under one second using a graphics-processing unit. What is particularly noteworthy is that the algorithm is “unsupervised,” which means it does not require additional information apart from image data. Some registration algorithms incorporate CNN models but require a “ground truth,” which means that another traditional algorithm is first run to compute accurate registrations. However, the algorithm developed by the MIT researchers maintains its accuracy without that data.

In addition to analyzing brain scans, the speedy algorithm could find a wide range of potential applications, according to the researchers. For instance, other researchers at MIT are currently running the algorithm on lung images. The algorithm could also allow for image registration during operations and allow surgeons to potentially register scans in near real-time, getting a much clearer picture on the progress of the surgery.

"This is a case where a big enough quantitative change [of image registration] – from hours to seconds – becomes a qualitative one, opening up new possibilities such as running the algorithm during a scan session while a patient is still in the scanner, enabling clinical decision making about what types of data needs to be acquired and where in the brain it should be focused without forcing the patient to come back days or weeks later," said Bruce Fischl, a professor in radiology at Harvard Medical School and a neuroscientist at Massachusetts General Hospital.
The papers were presented by the MIT researchers at the Conference on Computer Vision and Pattern Recognition (CVPR) and at the Medical Image Computing and Computer Assisted Interventions Conference (MICCAI).

Related Links:
Massachusetts Institute of Technology

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Portable Color Doppler Ultrasound System
S5000
Fixed X-Ray System (RAD)
Allengers 325 - 525
New
Imaging Table
CFPM201

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.