We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Global Market for Machine Learning to Surpass USD 2 Billion by 2023

By MedImaging International staff writers
Posted on 10 Aug 2018
Print article
The global market for machine learning in medical imaging is expected to record a robust growth and surpass USD 2 billion by 2023, driven by benefits such as enhanced productivity, increased diagnostic accuracy, more personalized treatment planning and improved clinical outcomes. However, the market is still in the innovator and early adopter phase, and will need to overcome several barriers before AI becomes mainstream in medical imaging. These are the latest findings of Signify Research (Cranfield, UK), an independent supplier of market intelligence and consultancy to the global healthcare technology industry.

AI appears well on its way to transform the diagnostic imaging industry and is expected to play a key role in enabling radiology departments to handle the ever-growing volume of diagnostic imaging procedures, despite the chronic shortage of radiologists around the world. Product development for AI-based medical image analysis tools has been gaining pace after the introduction of deep learning and affordable cloud compute (GPU) and storage. This has led to increased product availability from a wider selection of vendors, along with more accurate and sophisticated AI-based tools offering added functionalities.

However, there are several barriers to market growth such as a challenging regulatory process and the need for more large-scale validation studies. Additionally, the results from AI-based image analysis tools must be fully integrated into the radiologists' workflows and presented at the time of the primary read. Algorithm developers need to partner with imaging IT vendors to ensure their solutions are tightly integrated. Also, healthcare providers are reluctant to purchase AI tools from multiple companies due to vendor-specific integration challenges and administrative overheads. Algorithm developers must establish effective routes to market, such as distribution deals with established medical imaging vendors and a new breed of vendor-neutral AI platforms.

"The interest and enthusiasm for AI in the radiologist community has notably increased over the last 12 to 18 months and the discussion has moved on from AI as a threat, to how AI will augment radiologists. At the same time, there are emerging clinical applications where the use of AI has been shown to both improve clinical outcomes and deliver a return on investment for healthcare providers. Examples include software to detect and diagnose stroke and analysis tools to measure blood flow in non-invasive coronary exams," said Signify Research analyst Simon Harris.

"Up to now, the market has mainly been driven by the many start-ups and specialist companies who are applying machine learning to medical imaging, but the major medical imaging vendors are now ramping-up their AI activities. In the last year or so, we've also seen several of the world's technology giants apply their AI expertise to medical imaging, most notably China's Tencent and Alibaba. Over the coming years, the combined R&D firepower of the expanding ecosystem will knock down the remaining barriers and radiologists will have a rapidly expanding array of AI-powered workflow and diagnostic tools at their disposal," added Harris.

Related Links:
Signify Research

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Diagnostic Ultrasound System
MS1700C
New
Mobile Barrier
Tilted Mobile Leaded Barrier
New
Ultrasound Scanner
TBP-5533

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.