We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Software for Restoring Photos Could Find Use in Medical Imaging

By MedImaging International staff writers
Posted on 16 Aug 2018
Print article
Image: MRI reconstruction example. (a) Input image with only 10% of spectrum samples retained and scaled by 1/p. (b) Reconstruction by a network trained with noisy target images similar to the input image. (c) Original, uncorrupted image (Photo courtesy of NVIDIA).
Image: MRI reconstruction example. (a) Input image with only 10% of spectrum samples retained and scaled by 1/p. (b) Reconstruction by a network trained with noisy target images similar to the input image. (c) Original, uncorrupted image (Photo courtesy of NVIDIA).
Researchers have developed a deep learning-based approach that can fix photos originally taken in low light and are grainy or pixilated, and automatically remove the noise and artifacts by simply looking at examples of corrupted photos only. The approach can also be used to enhance MRI images, which could pave the way for a drastic improvement in medical imaging.

Researchers from NVIDIA (Santa Clara, CA, USA), Aalto University (Espoo, Finland), and MIT (Cambridge, Massachusetts, USA), presented their work at the recent International Conference on Machine Learning held in Stockholm, Sweden.

Recent work on deep learning in the field has been focused on training a neural network to restore images by showing example pairs of noisy and clean images, with the AI then proceeding to learn how to make up the difference. This method is different from the one developed by the researchers as it requires only two input images with noise or grain. Using NVIDIA Tesla P100 GPUs with the cuDNN-accelerated TensorFlow deep learning framework, the researchers trained their system on 50,000 images in the ImageNet validation set. The team tested the system by validating the neural network on three different datasets. The new AI can remove artifacts, noise, grain, and automatically enhance photos without being shown what a noise-free image looks like.

“It is possible to learn to restore signals without ever observing clean ones, at performance sometimes exceeding training using clean exemplars,” the researchers stated in their paper.“ [The neural network] is on par with state-of-the-art methods that make use of clean examples — using precisely the same training methodology, and often without appreciable drawbacks in training time or performance.”

“There are several real-world situations where obtaining clean training data is difficult: low-light photography (e.g., astronomical imaging), physically based rendering, and magnetic resonance imaging,” the team said. “Our proof-of-concept demonstrations point the way to significant potential benefits in these applications by removing the need for potentially strenuous collection of clean data. Of course, there is no free lunch – we cannot learn to pick up features that are not there in the input data – but this applies equally to training with clean targets.”

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Doppler String Phantom
CIRS Model 043A
Portable Color Doppler Ultrasound Scanner
DCU10
Silver Member
Radiographic Positioning Equipment
2-Step Multiview Positioning Platform

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.