We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Could Help Radiologists Improve Osteoarthritis X-ray Diagnosis

By MedImaging International staff writers
Posted on 25 Oct 2018
Print article
Image: The KL grading system to assess the severity of knee OA. A new UCSF algorithm will help detect OA using this system (Photo courtesy of the University of California, San Francisco).
Image: The KL grading system to assess the severity of knee OA. A new UCSF algorithm will help detect OA using this system (Photo courtesy of the University of California, San Francisco).
Researchers from the Center for Digital Health Innovation at the University of California (San Francisco, CA, USA) have developed a fully automated algorithm for the detection of osteoarthritis with radiographs using the 0–4 Kellgren Lawrence (KL) grading system with a state-of-the-art neural network.

Osteoarthritis classification in the knee is most commonly done with radiographs using the 0–4 KL grading system where 0 is normal, 1 shows doubtful signs of osteoarthritis, 2 is mild osteoarthritis, 3 is moderate osteoarthritis, and 4 is severe osteoarthritis. KL grading is widely used for clinical assessment and diagnosis of osteoarthritis, usually on a high volume of radiographs, making its automation highly relevant.

In order to develop a fully automated algorithm for the detection of osteoarthritis using KL gradings with a state-of-the-art neural network, the researchers collected 4,490 bilateral PA fixed-flexion knee radiographs from the Osteoarthritis Initiative dataset (age = 61.2 ± 9.2 years, BMI = 32.8 ± 15.9 kg/m2, 42/58 male/female split) for six different time points. The left and right knee joints were localized using a U-net model. These localized images were used to train an ensemble of DenseNet neural network architectures for the prediction of osteoarthritis severity.

This ensemble of DenseNets’ testing sensitivity rates of no osteoarthritis, mild, moderate, and severe osteoarthritis were 83.7, 70.2, 68.9, and 86.0%, respectively while the corresponding specificity rates were 86.1, 83.8, 97.1, and 99.1%. Using saliency maps, the researchers confirmed that the neural networks producing these results were in fact selecting the correct osteoarthritic features used in detection. The results suggest that the use of the automatic classifier could assist radiologists in making more accurate and precise diagnosis, given the increasing volume of radiographic image being taken in clinics.

Related Links:
University of California

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Mobile Barrier
Tilted Mobile Leaded Barrier
New
Multi-Use Ultrasound Table
Clinton
Ultrasound Color LCD
U156W

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.