We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Software Diagnoses Lung Cancer from CT Images

By MedImaging International staff writers
Posted on 07 Mar 2019
Print article
Image: The Doctor AIzimov system analyzes computed tomography results within 20 seconds (Photo courtesy of Peter the Great Saint-Petersburg Polytechnic University).
Image: The Doctor AIzimov system analyzes computed tomography results within 20 seconds (Photo courtesy of Peter the Great Saint-Petersburg Polytechnic University).
A team of Russian researchers, in collaboration with radiologists, has developed an intelligent software system for lung cancer diagnostics. The software, which can be installed on any computer, analyzes patients' computed tomography (CT) results within 20 seconds and provides an image in which the pathology is clearly marked. The system has been named Doctor AIzimov (AI for Artificial Intelligence) in honor of the science-fiction writer Isaac Asimov, who developed three famous laws of robotics.

The first tests of this intelligent system were carried out at the end of 2018 in which the system analyzed CT images of 60 patients and found focal nodules in lungs of small sizes (2 mm). The open testing of the intelligent system will be carried out at the beginning of 2019. The system will be adapted to analyze the results of the ultrasound and X-ray medical investigation of other organs.

In a new proposed and developed approach to the lung cancer classification using the chord method, segmented CT images are used: points are randomly drawn on the surface of a nodule, after that the points are connected by lines (chords). The length histogram of the chords reflects the shape and structure of the tumor. Although the system examines every nodule from the inside, its external surroundings are also very important. To learn more about the tumor, it is placed in a cube, and perpendiculars are drawn from its edges to the surface of the nodule.

Thus, instead of classifying graphically complex and heavy images of the CT (the size of every CT image is approximately 1 GB), the nodule is represented in the form of compact and simple histograms, which are then analyzed by the Doctor AIzimov system. The scientists have also trained the system to distinguish malignant and benign tumors. Currently, the dataset holds CT images of about 250 patients and the scientists plan to increase the number of images by four times by mid-2019.

With each new CT image, the system self-improves. In the future, a patient's CT images will be transferred to the supercomputer using the Internet that will reduce the diagnostic testing time per patient from 20 till 2 seconds. After that a radiologist will receive the marked image instead of the large CT image, thus significantly reducing the time needed for the analysis and diagnostics.

“Many different objects may be detected on the CT images, so the main task was to train the system to recognize what each of the objects represents. Using the clinical and radiological classification, we are trying to train the system not only to detect tumors, but also to distinguish other diseases similar to cancer,” said Anna Meldo, the head of the Radiology Department of the St. Petersburg Clinical Research Center for Specialized Types of Medical Care (Oncological).

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Digital X-Ray Detector Panel
Acuity G4
Portable X-ray Unit
AJEX130HN
New
DRF DR & Remote Fluoroscopy Solution
CombiDiagnost R90

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.