We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Algorithm Detects Breast Cancer in MR Images

By MedImaging International staff writers
Posted on 18 Apr 2019
Print article
Image: A smart algorithm has been trained on a neural network to recognize the appearance of breast cancer in MR images. The algorithm, described at the SBI/ACR Breast Imaging Symposium, used “Deep Learning,“ a form of machine learning, which is a type of artificial intelligence (Photo courtesy of Sarah Eskreis-Winkler, M.D.).
Image: A smart algorithm has been trained on a neural network to recognize the appearance of breast cancer in MR images. The algorithm, described at the SBI/ACR Breast Imaging Symposium, used “Deep Learning,“ a form of machine learning, which is a type of artificial intelligence (Photo courtesy of Sarah Eskreis-Winkler, M.D.).
A team of researchers from Memorial Sloan Kettering Cancer Center (New York, NY, USA) have trained a smart algorithm on a neural network to recognize the appearance of breast cancer in MR images. The algorithm uses deep learning, a form of machine learning, which is a type of artificial intelligence (AI), to identify tumors in breast MR images and could save time without compromising accuracy, according to the researchers.

The researchers used a neural network to classify segments of the MR image and to extract features. The algorithm learned to do this on its own and the use of deep learning eliminated the need to explicitly tell the computer exactly what to look for. The researchers tested the algorithm by processing MR images from 277 women, classifying segments within these images as either showing or not showing tumor. The algorithm achieved an accuracy of 93% on a test set, while sensitivity and specificity for tumor detection were 94% and 92%, respectively.

The researchers believe that the algorithm, if integrated into the clinical workflow, has the potential to improve the efficiency of radiologists. It could also save time during tumor boards by automatically scrolling to breast MRI slices that show cancer lesions, thus eliminating the time otherwise spent manually scrolling to these slices. However, the researchers have cautioned that deep learning cannot provide the whole solution and people would have to work with deep learning algorithms to achieve their potential.

“The way in which AI tools will be integrated into our daily practice is still uncertain,” said Eskreis-Winkler, M.D. who presented the data at the recent Society for Breast Imaging (SBI)/American College of Radiology (ACR) Breast Imaging Symposium. “So there is a big opportunity for us to be creative and to be proactive, to come up with ways to harness the power of AI to make us better radiologists and to better serve our patients.”

Related Links:
Memorial Sloan Kettering Cancer Center

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Portable Color Doppler Ultrasound Scanner
DCU10
New
Digital Radiographic System
OMNERA 300M
Silver Member
Radiographic Positioning Equipment
2-Step Multiview Positioning Platform

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.