We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Google AI System Beats Doctors in Detecting Breast Cancer

By MedImaging International staff writers
Posted on 06 Jan 2020
Print article
Illustration
Illustration
A team of researchers from Google Health (Palo Alto, CA, USA) have developed an artificial intelligence (AI) model which can spot breast cancer in de-identified screening mammograms (where identifiable information has been removed) with greater accuracy, fewer false positives, and fewer false negatives than experts. This can find future applications wherein the model could support radiologists performing breast cancer screenings.

Despite the wide use of digital mammography, or X-ray imaging of the breast, to screen for breast cancer, spotting and diagnosing the disease early remains a challenge even for experts, and can often result in both false positives and false negatives. Such inaccuracies can lead to delays in detection and treatment, unnecessary stress for patients and a higher workload for radiologists who are already in short supply.

Over the last two years, Google Health has been working with leading clinical research partners in the UK and US to see if AI can improve the detection of breast cancer by supporting radiologists to spot the signs of breast cancer more accurately. The researchers trained and tuned the AI model on a representative data set comprised of de-identified mammograms from more than 76,000 women in the UK and 15,000 women in the US to see if it could learn to spot signs of breast cancer in the scans. They went on to evaluate the model on a separate de-identified data set of more than 25,000 women in the UK and 3,000 women in the US In this evaluation, the model produced a 5.7% reduction of false positives in the US and a 1.2% reduction in the UK. It produced a 9.4% reduction in false negatives in the US and a 2.7% reduction in the UK.

In order to see if their model could generalize to other healthcare systems, the researchers trained it only on the data from the women in the UK and then evaluated it on the data set from women in the US. In this separate experiment, there was a 3.5% reduction in false positives and an 8.1% reduction in false negatives, indicating the model’s potential to generalize to new clinical settings while still performing at a higher level than experts. Despite the model only processing the most recent anonymized mammogram and receiving less information than human experts who had access to patient histories and prior mammograms, it surpassed individual experts in accurately identifying breast cancer.

Related Links:
Google Health

New
Gold Member
X-Ray QA Meter
T3 AD Pro
NMUS & MSK Ultrasound
InVisus Pro
Portable X-ray Unit
AJEX130HN
New
Ultrasound Scanner
TBP-5533

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.