We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Radiomic Algorithm Predicts if Patient’s Cancer Can Return 10 Years After Treatment

By MedImaging International staff writers
Posted on 16 Jan 2020
Print article
Illustration
Illustration
A new study by researchers at Penn Medicine (Philadelphia, PA, USA) has found that Magnetic Resonance Imaging (MRI) and an emerging field of medicine called radiomics — which uses algorithms to extract a large amount of features from medical images — could help to characterize the heterogeneity of cancer cells within a tumor and allow for a better understanding of the causes and progression of a person’s individual disease.

Diverse diseases such as breast cancer create challenges for clinicians, specifically on a cellular level. While one patient’s tumor may differ from another’s, the cells within the tumor of a single patient can also vary greatly, making it problematic, as an examination of a tumor usually relies on a biopsy, which only captures a small sample of the cells. In order to determine whether they could use imaging and radiomics for more personalized tumor characterization, the researchers used MRI to extract 60 radiomic features, or biomarkers, from 95 women with primary invasive breast cancer. After following up with the patients 10 years later, the researchers found that a scan that showed high tumor heterogeneity at the time of diagnosis — meaning a high diversity of cells — could successfully predict a cancer recurrence.

The researchers retrospectively analyzed patient scans from a 2002-2006 clinical trial conducted at Penn Medicine. For each woman, the researchers generated a “signal enhancement ratio” (SER) map and from it, extracted various imaging features in order to understand the relationship between those features and conventional biomarkers (such as gene mutations or hormone receptor status) and patient outcomes. They found that their algorithm was able to successfully predict recurrence-free survival after 10 years. To validate their findings, the researchers compared their results to an independent sample of 163 patients with breast cancer from the publicly available Cancer Imaging Archive.

“Our study shows that imaging has the potential to capture the whole tumor’s behavior without doing a procedure that is invasive or limited by sampling error,” said the study’s lead author Rhea Chitalia, a PhD candidate in the School of Engineering and Applied Science at the University of Pennsylvania. “Women who had more heterogeneous tumors tended to have a greater risk of tumor recurrence.”

While imaging may not completely replace the need for tumor biopsies, radiologic methods could augment what is currently the “gold standard” of care by giving a more detailed profile of a patient’s disease and guiding personalized treatment, according to principal investigator Despina Kontos, PhD, an associate professor of Radiology in the Perelman School of Medicine at the University of Pennsylvania.

Related Links:
Penn Medicine

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Transducer Covers
Surgi Intraoperative Covers
Ultrasound Color LCD
U156W
New
Ultrasound Imaging System
P12 Elite

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.