We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




World’s First Online Image-Based COVID-19 Diagnosis Improvement Tool Launched

By MedImaging International staff writers
Posted on 03 Apr 2020
Print article
Image: DetectED-X platform (Photo courtesy of DetectED-X)
Image: DetectED-X platform (Photo courtesy of DetectED-X)
DetectED-X (Sydney, Australia), a University of Sydney spinoff comprising radiation and imaging experts, has launched the world’s only online image-based COVID-19 diagnosis improvement tool for healthcare workers. The start-up has directed its breast cancer diagnosis tool at the coronavirus, drawing on pandemic cases globally with support from healthcare and industry leaders to ramp up COVID-19 detection. DetectED-X’s CovED platform, which can be accessed anywhere with an internet connection, is being provided for free and is supported by healthcare experts and leading corporations globally.

DetectED-X’s CovED follows on from the highly successful BreastScreen Reader Assessment Strategy (BREAST) platform, created in 2010 at the University of Sydney, which has been used internationally including in the US and Europe. The cloud-based life-saving technology can help doctors and radiologists diagnose cases faster and more accurately. Computed tomography (CT) lung scans, which produce cross-sectional images using X-rays and computers, are typically used after swabs are taken, to identify the extent and location of the disease; the CT scans produce images within minutes and are also able to diagnose COVID-19 in the very early stages that escape detection with nucleic acid tests.

DetectED-X’s approach, which includes algorithms to improve radiologist skills and identifying where errors were made on images in the online training sessions, has been shown to improve results significantly. Through CovED, individual clinicians can assess their performance on images on screen, and receive immediate feedback, including performance scores used in the industry. The image files personalized for each clinician are instantly returned showing any errors in their virtual diagnosis and the difficulty level is increased over time. As COVID-19 testing ramps up, the platform could facilitate rapid training where required – with modules able to be completed in as little as an hour – upskilling staff unfamiliar with lung radiology to prepare standardized reports for expert review.

“Our platform does not replace expert medical and radiologic training but CovED provides an effective way to recognize rapidly the appearances of COVID-19, which could be critical in a situation of too many patients and not enough expert radiologists, with the modules taking just 1-2 hours to complete,” said CEO Professor Patrick Brennan, medical radiation scientist and educator from the University of Sydney School of Health Sciences, Faculty of Medicine and Health. “This will be immediately crucial in developing countries, where numbers of radiologists are often insufficient – our tests will help people not only diagnose COVID-19 but also identify potentially life-threatening cases wherever they are.”

Related Links:
DetectED-X

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Silver Member
Radiographic Positioning Equipment
2-Step Multiview Positioning Platform
NMUS & MSK Ultrasound
InVisus Pro
New
Ultrasound Scanner
TBP-5533

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.