We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New AI-Based Medical Image Segmentation and Measurement Tool Minimizes Human Errors in Clinical Analysis

By MedImaging International staff writers
Posted on 21 Jan 2021
Print article
Image: New AI-Based Medical Image Segmentation and Measurement Tool Minimizes Human Errors in Clinical Analysis (Photo courtesy of Business Wire)
Image: New AI-Based Medical Image Segmentation and Measurement Tool Minimizes Human Errors in Clinical Analysis (Photo courtesy of Business Wire)
A new general purpose, AI-based medical image segmentation and measurement tool for detecting objects of interest and their boundaries quickly and automatically could make surgical and diagnostic measurements easier and more accurate for better treatment decisions.

RSIP Vision (Jerusalem, Israel) has launched the AI-based solution that requires minimal work by the user to deliver an accurate 3D visualization and analysis of patient anatomy and is applicable across medical imaging verticals & modalities. The solution runs automatically and is robust and clinically accurate, avoiding human factors such as fatigue and misreads which may result in mistakes in measurement.

RSIP Vision is offering the AI-based software to medical device manufacturers for use in leading facilities worldwide in order to detect and localize the area of interest and use those complex features in a scan through a series of algorithms. The segmentation creates boundaries around the image for better viewing and performs automatic measurements. Physicians and researchers can receive consistent, repeatable measurements regarding the dimensions and characteristics of a specific area, using AI technology that is available across all modalities, including X-ray, CT scans, MR, surgical robotics, and pathology. For example, the tool can be used for one-click segmentation of lesions in multiple organs such as the lungs and the liver, across patient populations and cohorts. The new AI module can be easily integrated in medical device software for multiple applications, without the need to collect and train machine learning models on extensive domain-specific training data, accelerating time to market for medical device companies looking to stay ahead of the AI adoption curve.

“Distinguishing and measuring organs, lesions, and other areas of interest in biopsy and pre-surgical planning can be tedious work, which is generally assigned to a specific employee or technician, or even a physician,” said Ron Soferman, Founder & CEO at RSIP Vision. “Our new segmentation tool makes it easier to pinpoint specific points and boundaries in images, which in turn leads to greater accuracy during surgeries without being dependent on the capability and experience of a specific individual. In 2021, RSIP Vision will continue to drive innovation in image analysis across the medical verticals through custom software, advanced algorithm development and custom technologies which will be found in medical devices in leading facilities worldwide. RSIP Vision ensures customers can leverage the latest advances in AI and computer vision, in order to save time and cost during medical procedures.”

Related Links:
RSIP Vision

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Doppler String Phantom
CIRS Model 043A
New
Portable Color Doppler Ultrasound System
S5000
Silver Member
Radiographic Positioning Equipment
2-Step Multiview Positioning Platform

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.