We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Automated AI Algorithm Uses Routine Imaging to Predict Cardiovascular Risk

By MedImaging International staff writers
Posted on 02 Feb 2021
Print article
Illustration
Illustration
An artificial intelligence (AI) deep learning system can automatically measure coronary artery calcium from routine computed tomography (CT) scans and predict cardiovascular events like heart attacks.

Investigators from the Brigham and Women’s Hospital (Boston, MA, USA) and the Massachusetts General Hospital’s Cardiovascular Imaging Research Center (CIRC; Boston, MA, USA) teamed up to develop and evaluate the deep learning system that automatically measures coronary artery calcium from CT scans to help physicians and patients make more informed decisions about cardiovascular prevention. The team validated the system using data from more than 20,000 individuals with promising results.

Coronary artery calcification - the buildup of calcified plaque in the walls of the heart’s arteries - is an important predictor of adverse cardiovascular events like heart attacks. Coronary calcium can be detected by CT scans, but quantifying the amount of plaque requires radiological expertise, time and specialized equipment. In practice, even though chest CT scans are fairly common, calcium score CTs are not. The new deep learning system automatically and accurately predicts cardiovascular events by scoring coronary calcium.

The team began by training the deep learning system on data from the Framingham Heart Study (FHS), a long-term asymptomatic community cohort study. Framingham participants received dedicated calcium scoring CT scans, which were manually scored by expert human readers and used to train the deep learning system. The deep learning system was then applied to three additional study cohorts, which included heavy smokers having lung cancer screening CT, patients with stable chest pain having cardiac CT, and patients with acute chest pain having cardiac CT. All told, the team validated the deep learning system in over 20,000 individuals. The automated calcium scores from the deep learning system highly correlated with the manual calcium scores from human experts. The automated scores also independently predicted who would go on to have a major adverse cardiovascular event like a heart attack.

“Coronary artery calcium information could be available for almost every patient who gets a chest CT scan, but it isn’t quantified simply because it takes too much time to do this for every patient,” said corresponding author Hugo Aerts, PhD, director of the Artificial Intelligence in Medicine (AIM) Program at the Brigham and Harvard Medical School. “We’ve developed an algorithm that can identify high-risk individuals in an automated manner.”

“This is an opportunity for us to get additional value from these chest CTs using AI,” said co-author Michael Lu, MD, MPH, director of artificial intelligence at MGH’s Cardiovascular Imaging Research Center. “The coronary artery calcium score can help patients and physicians make informed, personalized decisions about whether to take a statin. From a clinical perspective, our long-term goal is to implement this deep learning system in electronic health records, to automatically identify the patients at high risk.”

Related Links:
Brigham and Women’s Hospital
Massachusetts General Hospital


New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
X-ray Diagnostic System
FDX Visionary-A
Silver Member
Radiographic Positioning Equipment
2-Step Multiview Positioning Platform
Portable X-ray Unit
AJEX130HN

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.