We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Philips Healthcare

Operates in Diagnostic Imaging Systems, Patient Care and Clinical Informatics, Customer Services, and Home Healthcare... read more Featured Products: More products

Download Mobile App




Use of High-Temperature Superconductors to Make MR Imaging More Affordable, Accessible and Sustainable

By MedImaging International staff writers
Posted on 07 Dec 2022
Print article
Image: BlueSeal magnet for helium-free MR operations (Photo courtesy of Philips)
Image: BlueSeal magnet for helium-free MR operations (Photo courtesy of Philips)

A new research partnership focuses on the use of high-temperature superconductors to make MR imaging more affordable, accessible and sustainable in the future. Operating at higher temperatures and eliminating the use of liquid helium during both production and operation could reduce the size, weight and cost of MRI scanners, increasing accessibility across all patient communities and bringing advanced diagnostic imaging closer to a first line diagnostic tool.

Royal Philips (Amsterdam‎, Noord-Holland) has entered into a research partnership with magnet solutions provider MagCorp (Tallahassee, FL, USA) to explore superconducting magnets for MR scanners that do not require cooling to ultra-low temperatures (-452 °F or -269 °C) using liquid helium. Developing more sustainable alternatives to helium-cooled MRI magnets at a lower cost has the potential to offer significant benefits by making advanced MR imaging available to more patients in more diverse settings as well as potentially reducing radiology department capital and operating costs.

Operating at higher temperatures closer to ambient room temperature and eliminating liquid helium from both the production and operation of MRI scanners provides two major advantages. First, it decreases energy consumption required to sustain operation and reduces dependence on a finite and increasingly scarce natural resource, produced largely as a by-product of fossil-fuel (natural gas) extraction. Conventional MRI scanners often vent helium, which once released into the atmosphere escapes into outer space never to be seen again. Second, and just as important, it has the potential to reduce the size, weight and costs of MRI scanners. As a result, MRI’s superior diagnostic and functional imaging capabilities – notably its excellent soft-tissue imaging and absence of ionizing X-ray radiation – could be enjoyed by a larger number of patients, expanding access into underserved communities. The partnership between Philips and MagCorp aims to help realize these two major advantages.

With the introduction of its BlueSeal magnet technology in 2018, Philips already has a commercially available non-venting MRI scanner in widespread use that once charged with a small amount of helium (7 liters instead of a conventional scanner’s 1,500 liters) are sealed and operate without requiring additional helium for their entire operational life. Clinical MRI scanners that completely eliminate the need for helium are a clear direction for innovation in the long term. Using high-temperature superconductors supports a complete shift towards helium independence. The research partnership will focus on characterizing and demonstrating the feasibility of appropriate superconducting materials capable of operating at higher temperatures than today’s niobium-based superconductors. In common with helium, niobium is also a scarce element, whereas some of the new materials being investigated by the research team are based on more abundant elements. In addition to basic materials research, the team will also investigate the steps needed to commercialize the materials, and the technologies needed to enable their use in future MRI scanners.

“Florida State University’s MagLab, part of the U.S. National High Magnetic Field Laboratory, is home to many of the world’s leading researchers on novel superconducting materials that don’t require liquid helium temperatures to operate. Philips has decades of MR scanner design and development experience, including most recently the launch of the BlueSeal magnet technology,” said Josh Hilderbrand, Director, Head of MRI Magnet Research and Development at Philips. “Combining these resources with MagCorp’s research facilitation services will help leverage the latest technology to accelerate access and availability of MRI to more patients and healthcare providers.”

“MagCorp is proud of this partnership, which brings together Philips' game-changing BlueSeal magnet technology and the FSU MagLab’s unrivaled knowledge base about superconductors that can operate in a helium-free environment," said Jeff Whalen, Director of MagCorp. "Combining Philips' forward-thinking approach with FSU MagLab's scientists, who have a wealth of relevant expertise in the application of new superconductors, means Philips will be in the best position to develop innovations around this technology."

Related Links:
Royal Philips
MagCorp

3T MRI Scanner
MAGNETOM Cima.X
Ultra-Flat DR Detector
meX+1717SCC
New
Digital Radiographic System
OMNERA 300M
Mobile Barrier
Tilted Mobile Leaded Barrier

Print article

Channels

Ultrasound

view channel
Image: The addition of POC ultrasound can enhance first trimester obstetrical care (Photo courtesy of 123RF)

POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits

A new study has found that implementing point-of-care ultrasounds (POCUS) in clinics to assess the viability and gestational age of pregnancies in the first trimester improved care for pregnant patients... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–positron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.