We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Portable MRI Scanner Increases Access to Neuroimaging

By MedImaging International staff writers
Posted on 23 Dec 2020
Print article
Image: A low-cost, low-power brain MRI device could scan brains at the POC (Photo courtesy of MGH)
Image: A low-cost, low-power brain MRI device could scan brains at the POC (Photo courtesy of MGH)
A portable magnetic resonance imaging (MRI) scanner based on a compact, lightweight, permanent magnet could expand enable point-of-care (POC) diagnostics for neurological emergencies.

Developed at Massachusetts General Hospital (MGH; Boston, USA) and Harvard Medical School (HMS; Boston, MA, USA), the prototype brain MRI system uses an array of neodymium (NdFeB) rare-earth magnets that generate a low (80 mT) magnetic field with a built-in readout gradient. The configuration reduces reliance on high-power gradient drivers, lowers the overall requirements for power and cooling, and reduces acoustic noise. Imperfections in the encoding fields are mitigated with a generalized iterative image reconstruction technique.

A Halbach cylinder design creates a transverse field inside the magnet and zero field outside the magnet that results in a minimal stray field that requires neither cryogenics nor external power; the intrinsic self-shielding is thus ideal for portable applications where stray fields could pose safety hazards. The scanner can generate T1-weighted, T2-weighted, and proton density-weighted brain images with a spatial resolution of 2.2 × 1.3 × 6.8 mm3. The study was published on November 23, 2020, in Nature Biomedical Engineering.

“Although the scanner’s spatial resolution and sensitivity are both lower than that of a high-field MRI, its performance is sufficient to detect and characterize serious intracranial processes, such as hemorrhage, hydrocephalus, infarction, and mass lesions,” concluded lead author Clarissa Cooley, PhD, of the MGH department of radiology, and colleagues. “Our preliminary work also suggests that diffusion-weighted imaging, which is critical to applications such as acute stroke detection, should also be possible.”

A neodymium rare-earth magnet is made from an alloy of neodymium, iron, and boron formed into a tetragonal crystalline structure that has a magnetic energy value about 18 times greater than ferrite magnets (by volume) and 12 times (by mass). The strength and magnetic field homogeneity of such neodymium magnets has led to their introduction in MRI scanners as an alternative to superconducting magnets.

Related Links:
Massachusetts General Hospital
Harvard Medical School


New
Ultrasound Table
General 3-Section Top EA Ultrasound Table
Ultra-Flat DR Detector
meX+1717SCC
40/80-Slice CT System
uCT 528
New
MRI System
Ingenia Prodiva 1.5T CS

Print article

Channels

Ultrasound

view channel
Image: The addition of POC ultrasound can enhance first trimester obstetrical care (Photo courtesy of 123RF)

POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits

A new study has found that implementing point-of-care ultrasounds (POCUS) in clinics to assess the viability and gestational age of pregnancies in the first trimester improved care for pregnant patients... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–portron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.