We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Machine Learning Analyzes MRI Data to Predict Brain Tumor Progression

By MedImaging International staff writers
Posted on 17 Jan 2023
Print article
Researchers have used MRI data to further personalize cancer medicine (Photo courtesy of Pexels)
Researchers have used MRI data to further personalize cancer medicine (Photo courtesy of Pexels)

Glioblastoma multiforme (GBM), a brain cancer that has an average survival rate of just one year, can be difficult to treat because of its highly dense core, rapid growth, and location. Clinicians find it difficult to quickly and accurately estimate the diffusivity and proliferation rate for these tumors in an individual patient. Now, researchers have created a computational model that uses MRI data to predict the growth of these deadly brain tumors more accurately.

Researchers at the University of Waterloo (Waterloo, ON, Canada) analyzed MRI data from several sufferers of GBM using machine learning in order to better predict the progression of cancer. The team analyzed two sets of MRIs from each of five GBM patients who underwent extensive MRIs, waited for months, and then received another set of MRIs. Since these patients opted not to receive any treatment or intervention during this time, the researchers were provided a unique opportunity to examine how GBM grows when left unchecked by analyzing their MRIs.

Using a deep learning model, the researchers turned the MRI data into patient-specific parameter estimates that inform a predictive model for GBM growth. They applied this technique to the patients’ and synthetic tumors, for which the true characteristics were known, allowing them to validate the model. The scientists now have a good model of how GBM grows untreated and will now expand the model to include the impact of treatment on the tumors. The data set would then grow from a handful of MRIs to thousands. According to the researchers, access to MRI data – and partnership between mathematicians and clinicians – can significantly impact patients in the future.

“The integration of quantitative analysis into healthcare is the future,” said Cameron Meaney, a PhD candidate in Applied Mathematics and the study’s lead researcher.

Mobile Barrier
Tilted Mobile Leaded Barrier
New
Digital Radiography System
DigiEye 330
NMUS & MSK Ultrasound
InVisus Pro
New
X-ray Diagnostic System
FDX Visionary-A

Print article

Channels

Ultrasound

view channel
Image: Artificial intelligence can improve ovarian cancer diagnoses (Photo courtesy of 123RF)

AI-Based Models Outperform Human Experts at Identifying Ovarian Cancer in Ultrasound Images

Ovarian tumors are commonly found, often by chance. In many regions, there is a significant shortage of ultrasound specialists, which has raised concerns about unnecessary medical interventions and delayed... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–portron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.