We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Machine Learning Analyzes MRI Data to Predict Brain Tumor Progression

By MedImaging International staff writers
Posted on 17 Jan 2023
Print article
Researchers have used MRI data to further personalize cancer medicine (Photo courtesy of Pexels)
Researchers have used MRI data to further personalize cancer medicine (Photo courtesy of Pexels)

Glioblastoma multiforme (GBM), a brain cancer that has an average survival rate of just one year, can be difficult to treat because of its highly dense core, rapid growth, and location. Clinicians find it difficult to quickly and accurately estimate the diffusivity and proliferation rate for these tumors in an individual patient. Now, researchers have created a computational model that uses MRI data to predict the growth of these deadly brain tumors more accurately.

Researchers at the University of Waterloo (Waterloo, ON, Canada) analyzed MRI data from several sufferers of GBM using machine learning in order to better predict the progression of cancer. The team analyzed two sets of MRIs from each of five GBM patients who underwent extensive MRIs, waited for months, and then received another set of MRIs. Since these patients opted not to receive any treatment or intervention during this time, the researchers were provided a unique opportunity to examine how GBM grows when left unchecked by analyzing their MRIs.

Using a deep learning model, the researchers turned the MRI data into patient-specific parameter estimates that inform a predictive model for GBM growth. They applied this technique to the patients’ and synthetic tumors, for which the true characteristics were known, allowing them to validate the model. The scientists now have a good model of how GBM grows untreated and will now expand the model to include the impact of treatment on the tumors. The data set would then grow from a handful of MRIs to thousands. According to the researchers, access to MRI data – and partnership between mathematicians and clinicians – can significantly impact patients in the future.

“The integration of quantitative analysis into healthcare is the future,” said Cameron Meaney, a PhD candidate in Applied Mathematics and the study’s lead researcher.

Wall Fixtures
MRI SERIES
Ultra-Flat DR Detector
meX+1717SCC
3T MRI Scanner
MAGNETOM Cima.X
Portable Color Doppler Ultrasound System
S5000

Print article

Channels

Ultrasound

view channel
Image: The model trained on echocardiography, can identify liver disease in people without symptoms (Photo courtesy of 123RF)

Artificial Intelligence Detects Undiagnosed Liver Disease from Echocardiograms

Echocardiography is a diagnostic procedure that uses ultrasound to visualize the heart and its associated structures. This imaging test is commonly used as an early screening method when doctors suspect... Read more

Nuclear Medicine

view channel
Image: [18F]3F4AP in a human subject after mild incomplete spinal cord injury (Photo courtesy of The Journal of Nuclear Medicine, DOI:10.2967/jnumed.124.268242)

Novel PET Technique Visualizes Spinal Cord Injuries to Predict Recovery

Each year, around 18,000 individuals in the United States experience spinal cord injuries, leading to severe mobility loss that often results in a lifelong battle to regain independence and improve quality of life.... Read more

General/Advanced Imaging

view channel
Image: This image presents heatmaps highlighting the areas LILAC focuses on when making predictions (Photo courtesy of Dr. Heejong Kim/Weill Cornell Medicine)

AI System Detects Subtle Changes in Series of Medical Images Over Time

Traditional approaches for analyzing longitudinal image datasets typically require significant customization and extensive pre-processing. For instance, in studies of the brain, researchers often begin... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.