We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI-Powered System Combines MRI and Ultrasound Technology for Fast, Non-Invasive Endometriosis Diagnosis

By MedImaging International staff writers
Posted on 14 Aug 2023
Print article
Image: The IMAGENDO study aims to reducing the diagnostic delay of endometriosis through imaging (Photo courtesy of University of Adelaide)
Image: The IMAGENDO study aims to reducing the diagnostic delay of endometriosis through imaging (Photo courtesy of University of Adelaide)

Endometriosis, a painful condition in which sensitive tissue grows beyond the uterus, affects millions of women worldwide. The diagnosis of endometriosis often faces delays, with an average waiting period of 7-12 years for most women. The current diagnostic approach involves performing keyhole (laparoscopic) surgery to visually inspect endometrial deposits in the abdomen, subsequently confirmed through microscopic analysis. However, surgery presents challenges, accessibility issues, and often incurs delays. The prolonged diagnostic process of endometriosis can contribute to anxiety, depression, and fatigue, and necessitate consultations with numerous healthcare professionals.

Now, a new study using machine learning to automatically digitally combine the diagnostic capabilities of pelvic scans and magnetic resonance imaging (MRI) for identifying endometriosis lesions seeks to shorten the diagnostic journey as well as reduce reliance on surgery. The new artificial intelligence (AI) system with technology developed by the University of Adelaide (Adelaide, Australia) in partnership with researchers from the University of Surrey (Guildford, UK) could improve the quality of life of millions suffering from endometriosis. The IMAGENDO system developed by the researchers leverages AI to analyze data from ultrasound and MRI scans, significantly shortening the time required for endometriosis diagnosis.

“While the legitimate concerns about the use of AI have dominated the headlines, here is an example of how this technology can improve the lives of millions of people who suffer from endometriosis and severe pelvic pain,” said Professor Gustavo Carneiro, Professor of AI and Machine Learning at the University of Surrey and one of the Chief Investigators of IMAGENDO. “IMAGENDO is introducing innovative AI capabilities to provide fast, non-invasive endometriosis diagnosis by combining MRI and ultrasound technology.”

Related Links:
University of Adelaide
University of Surrey

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Diagnostic Ultrasound System
MS1700C
Silver Member
Radiographic Positioning Equipment
2-Step Multiview Positioning Platform
New
Imaging Table
CFPM201

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.