We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Ground-Breaking Method Combines fMRI with ML to Predict Mortality Risk in Severely Brain-Injured ICU Patients

By MedImaging International staff writers
Posted on 15 Sep 2023
Print article
Image: The new technique can predict which patients will recover from a serious brain injury with 80% accuracy (Photo courtesy of Freepik)
Image: The new technique can predict which patients will recover from a serious brain injury with 80% accuracy (Photo courtesy of Freepik)

Severe brain injuries, whether stemming from a stroke, cardiac arrest, or a traumatic event, can have life-altering consequences for patients and their families. In the case of patients admitted to the intensive care unit (ICU) for brain injury, uncertainty looms large for their families and healthcare providers regarding the chances of recovery, be it partial or complete. Now, researchers have developed a ground-breaking method for predicting which ICU patients can survive a severe brain injury.

Researchers at Western University (Ontario, Canada) combined functional magnetic resonance imaging (fMRI) with advanced machine learning algorithms to address one of the most pressing challenges in critical care: predicting recovery outcomes following significant brain injuries. Working alongside neurologists, the researchers monitored brain activity in 25 ICU patients during the initial days after their brain injuries. They aimed to find out if these readings could indicate which patients would ultimately survive. Earlier work by the team had shown that potential recovery signs could be captured by how different regions of the brain interacted with each other. Maintaining these inter-regional connections is crucial for the restoration of consciousness.

The researchers achieved the breakthrough when they figured out they could combine the fMRI data with machine learning technology. This innovative integration allowed them to predict with 80% accuracy which patients were likely to recover, a rate that surpasses the current standard of care. Despite this promising development, the team emphasizes that their predictive method isn't flawless and warrants additional investigation and validation.

“Modern artificial intelligence has shown incredible predictive capabilities. Combining this with our existing imaging techniques was enough to better predict who will recover from their injuries,” said Matthew Kolisnyk, a graduate student from Western University.

Related Links:
Western University 

Portable Color Doppler Ultrasound Scanner
DCU10
Ultrasound Imaging System
P12 Elite
New
Transducer Covers
Surgi Intraoperative Covers
New
Digital X-Ray Detector Panel
Acuity G4

Print article

Channels

Ultrasound

view channel
Image: Artificial intelligence can improve ovarian cancer diagnoses (Photo courtesy of 123RF)

AI-Based Models Outperform Human Experts at Identifying Ovarian Cancer in Ultrasound Images

Ovarian tumors are commonly found, often by chance. In many regions, there is a significant shortage of ultrasound specialists, which has raised concerns about unnecessary medical interventions and delayed... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–portron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.