We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




World's First Sensor Detects Errors in MRI Scans Using Laser Light and Gas

By MedImaging International staff writers
Posted on 03 May 2024
Print article
Image: The MRI sensor or magnetometer uses laserlight and gas to measure magnetic fields. (Photo courtesy of University of Copenhagen)
Image: The MRI sensor or magnetometer uses laserlight and gas to measure magnetic fields. (Photo courtesy of University of Copenhagen)

MRI scanners are daily tools for doctors and healthcare professionals, providing unparalleled 3D imaging of the brain, vital organs, and soft tissues, far surpassing other imaging technologies in quality. Despite their critical role in healthcare, these machines are not without faults. The strong magnetic fields within MRI scanners are prone to fluctuations, causing scan errors and disturbances that necessitate regular calibration. This necessity limits the use of advanced scanning methods, such as spiral sequences, which could significantly reduce the time required for diagnosing conditions like blood clots, sclerosis, and tumors. Spiral sequences could also advance MRI research, particularly in studying brain diseases, but the instability of the magnetic field currently makes such scans unfeasible.

Theoretically, these issues could be addressed by a sensor that monitors and maps magnetic field changes, allowing for computer corrections of the imaging errors. However, practically implementing this has been challenging, as traditional sensors that could perform this task disrupt the magnetic field due to their electrical nature and metal components. A breakthrough has now been achieved by a researcher at the University of Copenhagen (Copenhagen, Denmark), who has invented a new type of sensor. This sensor operates using laser light within fiber cables and a small glass container filled with gas, proving effective in prototype tests.

MRI scanners function by generating a powerful magnetic field that aligns protons in the body’s water, carbohydrates, and proteins. These protons are then disturbed by pulsed radio waves, causing them to spin out of alignment. As they realign with the magnetic field, they emit radio waves that are captured to create real-time 3D images of the targeted tissues. The new sensor precisely maps disturbances in the magnetic field, identifying the location and magnitude of these disruptions. This innovative development could soon allow for the correction of distorted MRI images, ensuring that they are accurate and reliable based on the sensor’s data, thus enhancing the effectiveness and reliability of MRI diagnostics.

"First we demonstrated that it was theoretically possible, and now we have proven that it can be done in practice," said Hans Stærkind, the main architect behind the sensor and device that comes with it. “In fact, we now have a prototype that can basically make the measurements needed without disturbing the MRI scanner. It needs to be developed more and fine-tuned, but has the potential to make MRI scans cheaper, better and faster – although not necessarily all three at once.”

Related Links:
University of Copenhagen

New
Gold Member
X-Ray QA Meter
T3 AD Pro
1.5T Superconducting MRI System
uMR 680
New
Mammography Analytics Platform
Unifi Analytics Software
Endoscopic Ultrasound Fine Needle Biopsy Device
Acquire

Print article

Channels

Ultrasound

view channel
Image: The augmented reality navigation system could improve lumbar puncture accuracy (Photo courtesy of Clear Guide Medical)

Wearable Ultrasound Navigation System Could Improve Lumbar Puncture Accuracy

A lumbar puncture, or spinal tap, is a common medical procedure in which a hollow needle is inserted into the spinal canal to access cerebrospinal fluid that surrounds the brain and spinal cord.... Read more

Nuclear Medicine

view channel
Image: A new biomarker makes it easier to distinguish between Alzheimer’s and primary tauopathy (Photo courtesy of Shutterstock)

Diagnostic Algorithm Distinguishes Between Alzheimer’s and Primary Tauopathy Using PET Scans

Patients often present at university hospitals with diseases so rare and specific that they are scarcely recognized by physicians in private practice. Primary 4-repeat tauopathies are a notable example.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Focused ultrasound therapy is poised to become an essential tool in every hospital, cancer care center and physician office (Photo courtesy of Arrayus)

Bracco Collaborates with Arrayus on Microbubble-Assisted Focused Ultrasound Therapy for Pancreatic Cancer

Pancreatic cancer remains one of the most difficult cancers to treat due to its dense tissue structure, which limits the effectiveness of traditional drug therapies. Bracco Imaging S.A. (Milan, Italy)... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.