We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Method Combines EEG, MRI, and ML to Identify Seizure-Prone Brain Regions Before Surgery

By MedImaging International staff writers
Posted on 29 Aug 2024
Print article
Image: The faster, non-invasive approach finds epilepsy hotspots before surgery (Photo courtesy of 123RF)
Image: The faster, non-invasive approach finds epilepsy hotspots before surgery (Photo courtesy of 123RF)

Neurosurgery for patients with drug-resistant epilepsy involves locating the brain regions responsible for seizures. Generally, this requires patients to undergo 7 to 10 days of invasive intracranial EEG monitoring, where electrodes are implanted inside the brain through skull openings to record seizure activity. Researchers have now introduced a shorter, noninvasive technique for mapping seizure zones, which offers insights beyond what traditional EEGs can provide. Detailed in the journal Epilepsia, this novel method integrates standard scalp EEG readings with MRI data to map brain structures and employs machine learning to identify the brain areas most likely to generate seizures.

The team at Boston Children’s Hospital (Boston, MA, USA) conducted a retrospective analysis using approximately five minutes of scalp EEG data from 50 patients with drug-resistant epilepsy who had undergone neurosurgery. By incorporating MRI data and applying machine learning algorithms, they defined functional cortical networks, capable of detecting epileptiform activity not visible to the naked eye and even in the absence of discernible brain abnormalities on MRI. The algorithm showed a 75% accuracy rate (91% sensitivity, 74% specificity) in pinpointing seizure zones during episodes of epileptiform activity and 62% accuracy during non-epileptiform periods. The algorithm was less likely to match the targeted zones in patients who continued to experience seizures post-surgery, implying the initial surgical intervention did not accurately target the epileptic focus.

In cases where surgery did not stop the seizures, the model suggested that not all epileptogenic regions had been removed. It also pointed out scenarios where the epileptic area might be too extensive for resection, suggesting that such patients might better benefit from palliative treatments like neuromodulation. The researchers aim to further validate their approach in a larger, prospective study and determine which patients with drug-resistant epilepsy could most benefit from surgical interventions. Given its brief and noninvasive nature, this new technique could be applied earlier in the disease process, potentially allowing for earlier surgical interventions and helping to mitigate the neurodevelopmental impacts of epilepsy.

“Using computational tools, we can reconstruct cortical activity that the eye cannot catch and understand how different regions are functionally connected,” said Eleonora Tamilia, PhD, who directs the Epilepsy Monitoring Unit Signal and Data Science Program within the Epilepsy Center at Boston Children’s Hospital. “If a seizure starts in one region of the cortex, it’s likely to spread to another network it connects to. Even regions that are far apart may fire together.”

Related Links:
Boston Children’s Hospital

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
3T MRI Scanner
MAGNETOM Cima.X
New
Computed Tomography System
Aquilion ONE / INSIGHT Edition
Portable Color Doppler Ultrasound Scanner
DCU10

Print article

Channels

MRI

view channel
Image: MRI microscopy of mouse and human pancreas with respective histology demonstrating ability of DTI maps to identify pre-malignant lesions (Photo courtesy of Bilreiro C, et al. Investigative Radiology, 2024)

Pioneering MRI Technique Detects Pre-Malignant Pancreatic Lesions for The First Time

Pancreatic cancer is the leading cause of cancer-related fatalities. When the disease is localized, the five-year survival rate is 44%, but once it has spread, the rate drops to around 3%.... Read more

Ultrasound

view channel
Image: A transparent ultrasound transducer-based photoacoustic-ultrasound fusion probe, along with images of a rat’s rectum and a pig’s esophagus (Photo courtesy of POSTECH)

Transparent Ultrasound Transducer for Photoacoustic and Ultrasound Endoscopy to Improve Diagnostic Accuracy

Endoscopic ultrasound is a commonly used tool in gastroenterology for cancer diagnosis; however, it provides limited contrast in soft tissues and only offers structural information, which reduces its diagnostic... Read more

General/Advanced Imaging

view channel
Image: The results of the eight-view 3D CT reconstruction from a public dataset (Photo courtesy of Medical Physics, doi.org/10.1002/mp.12345)

AI Model Reconstructs Sparse-View 3D CT Scan With Much Lower X-Ray Dose

While 3D CT scans provide detailed images of internal structures, the 1,000 to 2,000 X-rays captured from different angles during scanning can increase cancer risk, especially for vulnerable patients.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.