We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Novel Model Identifies Focal Cortical Dysplasia Lesion from MRI Scans

By MedImaging International staff writers
Posted on 17 Oct 2024
Print article
Image: Multiscale transformer based FCD lesion segmentation framework (Photo courtesy of SIAT/doi.org/10.1186/s13244-024-01803-8)
Image: Multiscale transformer based FCD lesion segmentation framework (Photo courtesy of SIAT/doi.org/10.1186/s13244-024-01803-8)

Epilepsy is a neurological disorder characterized by epileptic seizures, and focal cortical dysplasia (FCD) is a primary cause of drug-resistant epilepsy. The most effective treatment for FCD is the surgical removal of lesions, which relies heavily on their precise localization and delineation. However, detecting FCD lesions in Magnetic Resonance (MR) images is still a significant challenge in clinical practice due to the subtle structural alterations they induce. Now, a proposed multiscale transformer-based model for the end-to-end segmentation of FCD lesions from multi-channel MR images combines a convolutional neural network (CNN)-based encoder-decoder framework with multiscale transformer pathways, improving the feature representation of lesions within a global field of view.

A research team from the Chinese Academy of Sciences’ Shenzhen Institute of Advanced Technology (SIAT, Shenzhen, China), along with collaborators, conducted a study demonstrating that the CNN encoder extracts local features, which are subsequently input into the corresponding transformer pathways to capture global features at different scales. To minimize complexity and avoid overfitting, the researchers employed a computation- and memory-efficient Dual-Self-Attention (DSA) module to build the transformer pathway. This DSA module includes a spatial branch and a channel branch, which identify long-range dependencies between feature positions and channels, effectively emphasizing the areas and channels relevant to the lesions.

The researchers trained and assessed the proposed model using a public dataset of MR images from 85 patients, employing both subject-level and voxel-level metrics. The experimental findings, published in Insights into Imaging, revealed that the proposed method successfully detected lesions in 82.4% of patients, with a low false-positive lesion cluster rate of 0.176±0.381 per patient. Moreover, the model achieved an average Dice Coefficient of 0.410±0.288, outperforming five established methods.

"As far as we know, this is the first study to apply a transformer-based model for the FCD lesion segmentation," said Dr. XU Jinping from SIAT who led the team. "Our study promises to be a valuable tool for medical practitioners, enabling them to detect FCD lesions swiftly and accurately."

 

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Mobile Barrier
Tilted Mobile Leaded Barrier
New
Mini C-arm Imaging System
Fluoroscan InSight FD
New
Computed Tomography System
Aquilion ONE / INSIGHT Edition

Print article

Channels

Ultrasound

view channel
Image: A transparent ultrasound transducer-based photoacoustic-ultrasound fusion probe, along with images of a rat’s rectum and a pig’s esophagus (Photo courtesy of POSTECH)

Transparent Ultrasound Transducer for Photoacoustic and Ultrasound Endoscopy to Improve Diagnostic Accuracy

Endoscopic ultrasound is a commonly used tool in gastroenterology for cancer diagnosis; however, it provides limited contrast in soft tissues and only offers structural information, which reduces its diagnostic... Read more

General/Advanced Imaging

view channel
Image: The results of the eight-view 3D CT reconstruction from a public dataset (Photo courtesy of Medical Physics, doi.org/10.1002/mp.12345)

AI Model Reconstructs Sparse-View 3D CT Scan With Much Lower X-Ray Dose

While 3D CT scans provide detailed images of internal structures, the 1,000 to 2,000 X-rays captured from different angles during scanning can increase cancer risk, especially for vulnerable patients.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.