We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Scans Light Up Aggressive Tumors for Better Treatment

By MedImaging International staff writers
Posted on 18 Dec 2024
Print article
Image: The chemical compound lights up treatment-resistant cancers on imaging scans (Photo courtesy of King’s College London)
Image: The chemical compound lights up treatment-resistant cancers on imaging scans (Photo courtesy of King’s College London)

Non-small cell lung cancer is the most prevalent type of lung cancer. Although standard treatments such as surgery, radiotherapy, chemotherapy, and immunotherapy have advanced, survival rates have remained relatively unchanged in the last decade. Typically, patients with lung cancer begin treatment, such as chemotherapy, and then wait 12 weeks for a CT or PET scan to assess whether the tumor has shrunk, remained stable, or grown. However, this 12-week delay can often be too late to adjust the treatment plan, and end-of-life care is frequently the only remaining option. At present, there is no rapid, early method to determine if malignant tumors are resistant to treatment. Now, in a breakthrough, researchers have used a chemical compound to highlight treatment-resistant cancers in imaging scans, helping doctors target and treat the cancer more effectively. This radiotracer – an injected compound used in PET scans – could alert doctors to whether a patient's aggressive cancer will resist chemotherapy before the treatment starts. This approach would prevent unnecessary treatments and allow for alternative therapies to be considered, improving the chances of successful treatment.

Researchers from King’s College London (London, UK repurposed a radiotracer that is already used as a diagnostic tool in clinical trials in the USA and South Korea to reveal treatment-resistant tumors on PET scans. The molecule specifically targets xCT, a protein associated with tumors that are resistant to therapy. The study, published in Nature Communications, demonstrated that therapy-resistant non-small cell lung cancer tumors appeared to "light up like a Christmas tree" on PET scans after the radiotracer was injected. In the study images, PET scans of animal models showed that therapy-resistant cancer cells illuminated more brightly than tumors that responded to treatment.

Additionally, the research revealed that xCT could also be targeted with an antibody-drug conjugate, a new class of drug that targets therapy-resistant cancer cells and selectively destroys them while minimizing toxicity to healthy cells. While this research is still in its early stages, the researchers are hopeful that it could provide new treatment options for patients with aggressive and hard-to-treat cancers, such as lung, pancreatic, and breast cancers. The researchers are preparing to test this approach in humans, with a phase I clinical trial scheduled to begin in January. This trial will recruit 35 patients and use a total-body PET scanner to track xCT expression before and after treatment.

“Our study is the cumulation of five years of work. Frequently, cancer patients find out too late that the treatment they’re on does not work,” said Tim Witney, a Professor of Molecular Imaging from King’s College London, and lead researcher of the study. “The radiotracer 18F-FSPG binds to the tumor-resistant cells and lights up like a Christmas tree in imaging – clearly showing the aggressive cancer. With this technique, we can give the right treatment to the right patient, making it more cost-efficient for the NHS and providing hope for patients with aggressive tumors.”

Multi-Use Ultrasound Table
Clinton
New
Mini C-arm Imaging System
Fluoroscan InSight FD
New
MRI System
Ingenia Prodiva 1.5T CS
Ultrasound Imaging System
P12 Elite

Print article

Channels

Ultrasound

view channel
Image: The novel method of fighting cancer can stimulate critical cytokine secretion in T cells

Ultrasound-Directed Microbubbles Boost Immune Response Against Tumors

A significant challenge in cancer treatment is the tumor's ability to suppress the immune system, particularly by deactivating T cells that enter the tumor. Once inside, the tumor can inhibit T cells from... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.