We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Membrane Protein Structure Visualized Using Emerging X-Ray Technology despite Existing Damage

By MedImaging International staff writers
Posted on 23 Jan 2011
Australian researchers have found a way to measure the structure of membrane proteins in spite of being damaged when using X-ray free-electron lasers (XFELs), a discovery that will help fast track the development of targeted drugs using new XFELs technology.

Approximately 70% of drugs on the market today depend on the activity of membrane proteins, which are complex molecules that form the membranes of the cells in our body. A major problem for the design of new pharmaceuticals, often known as the "membrane protein problem,” is that they do not form the crystals needed to enable further investigation of the structure to design better drugs.

A large international effort is being undertaken to determine the structures of membrane proteins using XFELs--large facilities that create such a bright beam of X-rays it is possible to see the X-ray light bouncing off a single molecule without forming a crystal.

Prof. Keith Nugent, and ARC Federation fellow and director of the Australian Research Council Center of Excellence for Coherent X-ray Science (CXS) at the University of Melbourne (Australia) reported that a key problem was that the light from an XFEL was so bright a molecule would start to disintegrate in less than one thousandth of a millionth of a millionth of a second.

In an article published online December 19, 2010, in the journal Nature Physics, Prof. Nugent and Associate Prof. Harry Quiney from the ARC Center of Excellence for Coherent X-ray Science (CXS) have developed a method by which the damage from the XFEL pulse may be included in the data analysis. Associate Prof. Quiney, also from the School of Physics at the University of Melbourne, reported that the study's findings revealed that high-resolution molecular structures may be obtained from X-ray scattering data using a few-femtosecond pulse from an XFEL, even if the interaction resulted in significant electronic damage to the target. "This result has far-reaching implications for the future development of structural biology, because it removes a significant obstacle to the practical realization of the molecular microscope using XFEL sources,” he said.

The technology also provides significant clues into the complex, raging, and little-understood interactions that are driven by the interaction of an XFEL pulse with an atom, molecule, or solid. The scientists' approach uses advanced molecular physics and precise data analysis to determine a new approach to measuring molecular structure. Although still at the theoretic and computation level when put into practice, this finding should remove a major hurdle in the path to solving the membrane protein problem.

In 2010, CXS signed an agreement with Japanese colleagues and will host the 4th Asia-Oceania Workshop on Science with X-ray Free Electron Lasers in 2011.

Prof. Nugent noted that this was an extremely exciting time for X-ray science. "My colleagues and I are convinced that our recent work is a critically important step forward,” he said. "We are very much looking forward to working with our Japanese colleagues in the coming years.”

The first XFEL began operating at Stanford University in Palo Alto, CA, USA, in 2009 and the second, the SPring8 facility in Harima Science Park City, Hyogo Prefecture, Japan, will start in 2011. A third is under construction in Europe to commence in 2014.

Related Links:
University of Melbourne


Ultrasound Needle Guidance System
SonoSite L25
40/80-Slice CT System
uCT 528
Portable X-ray Unit
AJEX140H
Mobile X-Ray System
K4W

Channels

Nuclear Medicine

view channel
Image: The new tracer, 64Cu-NOTA-EV-F(ab′)2​, targets nectin-4, a protein strongly linked to tumor growth in both TNBC and UBC cancer types. (Wenpeng Huang et al., DOI: 10.2967/jnumed.125.270132)

PET Tracer Enables Same-Day Imaging of Triple-Negative Breast and Urothelial Cancers

Triple-negative breast cancer (TNBC) and urothelial bladder carcinoma (UBC) are aggressive cancers often diagnosed at advanced stages, leaving limited time for effective treatment decisions.... Read more

General/Advanced Imaging

view channel
Image: Concept of the photo-thermoresponsive SCNPs (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents

Medical imaging technologies face ongoing challenges in capturing accurate, detailed views of internal processes, especially in conditions like cancer, where tracking disease development and treatment... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.