We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Membrane Protein Structure Visualized Using Emerging X-Ray Technology despite Existing Damage

By MedImaging International staff writers
Posted on 23 Jan 2011
Print article
Australian researchers have found a way to measure the structure of membrane proteins in spite of being damaged when using X-ray free-electron lasers (XFELs), a discovery that will help fast track the development of targeted drugs using new XFELs technology.

Approximately 70% of drugs on the market today depend on the activity of membrane proteins, which are complex molecules that form the membranes of the cells in our body. A major problem for the design of new pharmaceuticals, often known as the "membrane protein problem,” is that they do not form the crystals needed to enable further investigation of the structure to design better drugs.

A large international effort is being undertaken to determine the structures of membrane proteins using XFELs--large facilities that create such a bright beam of X-rays it is possible to see the X-ray light bouncing off a single molecule without forming a crystal.

Prof. Keith Nugent, and ARC Federation fellow and director of the Australian Research Council Center of Excellence for Coherent X-ray Science (CXS) at the University of Melbourne (Australia) reported that a key problem was that the light from an XFEL was so bright a molecule would start to disintegrate in less than one thousandth of a millionth of a millionth of a second.

In an article published online December 19, 2010, in the journal Nature Physics, Prof. Nugent and Associate Prof. Harry Quiney from the ARC Center of Excellence for Coherent X-ray Science (CXS) have developed a method by which the damage from the XFEL pulse may be included in the data analysis. Associate Prof. Quiney, also from the School of Physics at the University of Melbourne, reported that the study's findings revealed that high-resolution molecular structures may be obtained from X-ray scattering data using a few-femtosecond pulse from an XFEL, even if the interaction resulted in significant electronic damage to the target. "This result has far-reaching implications for the future development of structural biology, because it removes a significant obstacle to the practical realization of the molecular microscope using XFEL sources,” he said.

The technology also provides significant clues into the complex, raging, and little-understood interactions that are driven by the interaction of an XFEL pulse with an atom, molecule, or solid. The scientists' approach uses advanced molecular physics and precise data analysis to determine a new approach to measuring molecular structure. Although still at the theoretic and computation level when put into practice, this finding should remove a major hurdle in the path to solving the membrane protein problem.

In 2010, CXS signed an agreement with Japanese colleagues and will host the 4th Asia-Oceania Workshop on Science with X-ray Free Electron Lasers in 2011.

Prof. Nugent noted that this was an extremely exciting time for X-ray science. "My colleagues and I are convinced that our recent work is a critically important step forward,” he said. "We are very much looking forward to working with our Japanese colleagues in the coming years.”

The first XFEL began operating at Stanford University in Palo Alto, CA, USA, in 2009 and the second, the SPring8 facility in Harima Science Park City, Hyogo Prefecture, Japan, will start in 2011. A third is under construction in Europe to commence in 2014.

Related Links:
University of Melbourne


New
Digital Radiography System
DigiEye 680
New
Mobile Cath Lab
Photon F65/F80
Silver Member
X-Ray QA Meter
T3 AD Pro
Radiation Therapy Treatment Software Application
Elekta ONE

Print article

Channels

Ultrasound

view channel
Image: Ultrasound detection of vascular changes post-RT corresponds to shifts in the immune microenvironment (Photo courtesy of Theranostics, DOI:10.7150/thno.97759)

Ultrasound Imaging Non-Invasively Tracks Tumor Response to Radiation and Immunotherapy

While immunotherapy holds promise in the fight against triple-negative breast cancer, many patients fail to respond to current treatments. A major challenge has been predicting and monitoring how individual... Read more

Nuclear Medicine

view channel
Image: [18F]3F4AP in a human subject after mild incomplete spinal cord injury (Photo courtesy of The Journal of Nuclear Medicine, DOI:10.2967/jnumed.124.268242)

Novel PET Technique Visualizes Spinal Cord Injuries to Predict Recovery

Each year, around 18,000 individuals in the United States experience spinal cord injuries, leading to severe mobility loss that often results in a lifelong battle to regain independence and improve quality of life.... Read more

General/Advanced Imaging

view channel
Image: Data collected in pre-treatment CT-scans may provide important imaging biomarkers to better predict patient prognosis (Photo courtesy of Shutterstock)

New CT Scan Technique to Improve Prognosis and Treatments for Head and Neck Cancers

Cancers of the mouth, nose, and throat are becoming increasingly common in the U.S., particularly among younger individuals. Approximately 60,000 new cases are diagnosed annually, with 20% of these cases... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.