We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Improved “Magic Bullet” Designed for Cancer Detection, Radiotherapy

By MedImaging International staff writers
Posted on 29 Sep 2011
Print article
Oncologists have long sought a powerful “magic bullet” that can search for tumors in the body so that they can be imaged and then destroyed.

Until recently, scientists accepted the idea that such an agent, an agonist, needed to enter and accumulate in the cancerous cells to act. An international research team has now shown in cancer patients that an investigational agent that sticks onto the surface of tumor cells without triggering internalization, an antagonist, may be safer and even more effective than agonists.

One of the Salk Institute’s (San Diego, CA, USA) leading researchers, Dr. Jean Rivier, professor in Salk’s Clayton Foundation Laboratories for Peptide Biology and his Swiss collaborator, Dr. Jean Claude Reubi, University of Berne (Switzerland) and adjunct professor at Salk, coauthored a pilot study, published in the September 2011 issue of the Journal of Nuclear Medicine, of five patients and demonstrated that their antagonist, 111In-DOTA-BASS, outperformed the agonist agent, OctreoScan, that is widely used in the clinic to image neuroendocrine tumors bearing somatostatin receptors.

“This is the first proof of principle in humans that labeled peptide antagonists can effectively image tumors. Additional research suggests that we could one day use a different radioactive metal to effectively kill the tumors,” noted Dr. Rivier.

Dr. Reubi, a molecular pathologist, and Dr. Rivier, a chemist, collaborated in the design and selection of natIn-DOTA-BASS for human testing, and Dr. Helmut R. Maecke, a radiochemist, loaded DOTA-BASS with its radioactive marker and assessed the compound before use in human. Subsequently, the “first in man” study with the radioactive loaded DOTA-BASS was performed at the University Hospital in Freiburg (Germany), by Drs. Damian Wild, Melpomeni Fani, Martin Behe, Ingo Brink, Helmut R. Maecke, and Wolfgang A. Weber.

The basis for this study goes back to 1973, when a team of Salk researchers, which included Drs. Brazeau, Vale, Burgus, Rivier, and Roger Guillemin, a 1977 Nobel laureate, isolated and characterized somatostatin, a peptide produced by neuroendocrine glands. The scientists discovered that the normal function of somatostatin is to block the release of growth hormone throughout the body, which includes suppressing the release of thyroid-stimulating hormone (TSH) from the thyroid.

Drs. Rivier, Reubi and their colleagues from Germany showed that 111In-DOTA-BASS bound to a greater number of somatostatin receptors on cancer cells than the agonist OctreoScan, and that it did accumulate in normal tissue (liver and kidney) to a lesser extent. The prototype antagonist therapy has been revamped, and the version studied in the Journal of Nuclear Medicine publication, 111In-DOTA-BASS, detected 25 of 28 metastatic neuroendocrine tumors in the patients, whereas OctreoScan detected only 17.

In-DOTA-BASS has been licensed to a pharmaceutical company for clinical trial development, according to Dr. Rivier, who added that other researchers are exploring an antagonist approach for other G-protein coupled receptors that are amply expressed on cancer cells.

Related Links:
Salk Institute
University of Berne


X-ray Diagnostic System
FDX Visionary-A
New
Stereotactic QA Phantom
StereoPHAN
New
Digital Radiography System
DigiEye 680
Diagnostic Ultrasound System
MS1700C

Print article

Channels

Ultrasound

view channel
Image: Ultrasound detection of vascular changes post-RT corresponds to shifts in the immune microenvironment (Photo courtesy of Theranostics, DOI:10.7150/thno.97759)

Ultrasound Imaging Non-Invasively Tracks Tumor Response to Radiation and Immunotherapy

While immunotherapy holds promise in the fight against triple-negative breast cancer, many patients fail to respond to current treatments. A major challenge has been predicting and monitoring how individual... Read more

Nuclear Medicine

view channel
Image: [18F]3F4AP in a human subject after mild incomplete spinal cord injury (Photo courtesy of The Journal of Nuclear Medicine, DOI:10.2967/jnumed.124.268242)

Novel PET Technique Visualizes Spinal Cord Injuries to Predict Recovery

Each year, around 18,000 individuals in the United States experience spinal cord injuries, leading to severe mobility loss that often results in a lifelong battle to regain independence and improve quality of life.... Read more

General/Advanced Imaging

view channel
Image: Data collected in pre-treatment CT-scans may provide important imaging biomarkers to better predict patient prognosis (Photo courtesy of Shutterstock)

New CT Scan Technique to Improve Prognosis and Treatments for Head and Neck Cancers

Cancers of the mouth, nose, and throat are becoming increasingly common in the U.S., particularly among younger individuals. Approximately 60,000 new cases are diagnosed annually, with 20% of these cases... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.