We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




CT Scans Reveal H7N9 Pneumonia Different from Other Strains

By MedImaging International staff writers
Posted on 25 Jul 2013
Print article
H7N9 pneumonia is characterized by imaging findings that differentiate it from other types of pneumonia, including rapidly progressive changes in the lungs and pulmonary connective tissues, according to the first study to describe radiologic findings in the disease.

The study’s findings were published on July 2, 2013, online in the journal Radiology. “The severity of these findings is associated with the severity of the clinical condition of the patients,” said study coauthor Zhiyong Zhang, MD, PhD, from the department of radiology at Shanghai Public Health Clinical Center and Shanghai Medical College of Fudan University (China).

H7N9 is a recently discovered subtype of avian influenza virus, also known as “bird flu.” Cases of bird flu infection in humans typically result from direct or close contact with infected poultry, such as domesticated chickens, pigeons, or ducks, or surfaces contaminated with secretions and excretions from infected birds. The first human outbreak of H7N9 was reported in China in March 2013. This new strain in humans has caused severe and rapidly progressing respiratory illness. H7N9 can cause acute respiratory distress syndrome, organ failure, and death.

Dr. Zhang and colleagues, for the study, evaluated the clinical data and radiologic files of 12 patients with avian-origin influenza A H7N9 virus who were admitted to Shanghai Public Health Clinical Center between April 3, 2013, and April 20, 2013. The 12 patients included nine men and three women, 47 to 81 years old (mean age, 66 years).

None of the patients raised pigeons or lived in or near a pigeon-infested area. One patient kept chickens at home, and four patients had gone to various farmers’ markets before the symptom onset. All other patients had no clear history of exposure to poultry. All patients exhibited fever with temperature of 38–40 °C, cough, shortness of breath, and white phlegm and loss of strength at the onset of the disease or within one week. They quickly progressed to severe pneumonia and acute respiratory distress syndrome.

The intervals between the onset of symptoms and the first imaging examinations ranged from one to six days for chest X-rays and two to nine days for computed tomography (CT) imaging. Chest X-rays were taken every one or two days thereafter to monitor disease progression and treatment response. To assess disease progression and possible complications, 10 of the patients underwent follow-up computed tomography (CT) two to eight days after initial examination.

The imaging findings included ground-glass opacity (a hazy area in the lungs with the appearance of ground glass) in all 12 patients, consolidations (regions of lung tissue filled with liquid) in 11 patients, air bronchograms (air-filled bronchi that are visible by swelling in neighboring tissues) in 11 patients, and interlobular septal thickening (thickening of pulmonary connective tissue) in 11 patients. Lung lesions involved three or more lobes in all cases, but were mostly detected in right lower lobe. Follow-up CT imaging in 10 patients showed interval improvement of the lesions in three patients and worsening of the lesions in seven patients. Imaging findings closely mirrored the overall clinical severity of the disease.

“The distribution and very rapid progression of consolidations, ground-glass opacity, and air bronchograms, with interstitial changes, in H7N9 pneumonia help differentiate it from other causes of pneumonia,” Dr. Zhang said.

Whereas these imaging characteristics are comparable to those found in other respiratory diseases, such as H1N1, H5N1 and severe acute respiratory syndrome (SARS), there are differences. “Both H1N1 pneumonia and SARS distribute more peripherally, with more changes in the spaces between tissues, and progress less rapidly than H7N9,” Dr. Zhang said. “In our study, the right lower lung was most likely to be involved, while there’s no lobar predilection in findings of H5N1 influenza.”

Related Links:

Shanghai Medical College of Fudan University


Wall Fixtures
MRI SERIES
New
HF Stationary X-Ray Machine
TR20G
Portable Color Doppler Ultrasound Scanner
DCU10
New
Ultrasound Probe Disinfection Solution
UltrOx

Print article

Channels

Ultrasound

view channel
Image: Ultrasound detection of vascular changes post-RT corresponds to shifts in the immune microenvironment (Photo courtesy of Theranostics, DOI:10.7150/thno.97759)

Ultrasound Imaging Non-Invasively Tracks Tumor Response to Radiation and Immunotherapy

While immunotherapy holds promise in the fight against triple-negative breast cancer, many patients fail to respond to current treatments. A major challenge has been predicting and monitoring how individual... Read more

Nuclear Medicine

view channel
Image: [18F]3F4AP in a human subject after mild incomplete spinal cord injury (Photo courtesy of The Journal of Nuclear Medicine, DOI:10.2967/jnumed.124.268242)

Novel PET Technique Visualizes Spinal Cord Injuries to Predict Recovery

Each year, around 18,000 individuals in the United States experience spinal cord injuries, leading to severe mobility loss that often results in a lifelong battle to regain independence and improve quality of life.... Read more

General/Advanced Imaging

view channel
Image: The rugged and miniaturized CT scanner is being designed for use beyond a typical hospital setting (Photo courtesy of Micro-X)

World’s First Mobile Whole-Body CT Scanner to Provide Diagnostics at POC

Conventional CT scanners dominate the global medical imaging market, holding approximately 30% of the market share. These scanners are the current standard for various diagnostic applications, including... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.