We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Nanomaterial Promises Enhanced Detection and Treatment of Breast Cancer

By MedImaging International staff writers
Posted on 07 Jan 2014
Print article
Image: Muonium [an exotic atom made up of an antimuon and an electron] trapped inside a buckyball. Muons provide a complementary probe to neutrons, particularly in the areas of magnetism, superconductivity, and charge transport (Photo courtesy of ISIS).
Image: Muonium [an exotic atom made up of an antimuon and an electron] trapped inside a buckyball. Muons provide a complementary probe to neutrons, particularly in the areas of magnetism, superconductivity, and charge transport (Photo courtesy of ISIS).
A collaboration of scientists from the United Kingdom, Denmark, Brazil, and Germany are devising new detection and treatment technology for breast cancer patients.

The study’s findings were published December 2013 in the Journal of Alloys and Compounds. Current diagnostic methods such as mammograms can only detect between 65% and 95% of tumors, and developing better ways of detection is of prime urgency. If not detected and treated early enough, breast cancer can spread to other areas of the body, increasing the probability that the disease will become lethal.

The team of scientists has been using the Polaris instrument at the ISIS pulsed neutron and muon source at the Rutherford Appleton Laboratory (Harwell Oxford, UK) to develop a new bio-nanocomposite that they hope will eventually lead to earlier detection, and more successful treatment, of breast cancer. The new substance exploits the fact that cancer cells attract a molecule called hydroxyapatite, which is a component of bones. The researchers are developing magnetic nanoparticles coated with a biocompatible polymer that includes hydroxyapatite nanocrystals. When administered into the body, these nanoparticles should travel right to cancer cells, and once they do, they make it much easier to detect the tumor on an MRI scan.

Not only do the nanoparticles help to identify tumors, but they may also help to block the metastasis to other areas of the body, as hydroxyapatite is known to suppress that facet of tumor activity.

The next phase of study is to incorporate antitumor agents into the nanoparticles. The magnetic nature of the nanoparticles means that they can be directed to the site of the tumor by using magnets outside of the body. If antitumor drugs can be added to the nanoparticles, then they can be used to deliver the treatment directly to the tumor, optimizing the effectiveness of the treatment and reducing the risk of harmful side effects--imagine a fleet of tiny drones, delivering anticancer weapons right where they are needed.

This research is at a very early stage, and far more study is required, according to the scientists, before it can be developed into a treatment option.

ISIS generates beams of neutrons and muons that allow scientists to study materials at the atomic level using a suite of instruments, frequently described as super-microscopes. It supports a national and international community of more than 2,000 scientists who use neutrons and muons for research in physics, chemistry, materials science, geology, engineering, and biology.

Related Links:

ISIS


New
HF Stationary X-Ray Machine
TR20G
Ultra-Flat DR Detector
meX+1717SCC
New
Ultrasound Table
Women’s Ultrasound EA Table
NMUS & MSK Ultrasound
InVisus Pro

Print article

Channels

Ultrasound

view channel
Image: Ultrasound detection of vascular changes post-RT corresponds to shifts in the immune microenvironment (Photo courtesy of Theranostics, DOI:10.7150/thno.97759)

Ultrasound Imaging Non-Invasively Tracks Tumor Response to Radiation and Immunotherapy

While immunotherapy holds promise in the fight against triple-negative breast cancer, many patients fail to respond to current treatments. A major challenge has been predicting and monitoring how individual... Read more

Nuclear Medicine

view channel
Image: [18F]3F4AP in a human subject after mild incomplete spinal cord injury (Photo courtesy of The Journal of Nuclear Medicine, DOI:10.2967/jnumed.124.268242)

Novel PET Technique Visualizes Spinal Cord Injuries to Predict Recovery

Each year, around 18,000 individuals in the United States experience spinal cord injuries, leading to severe mobility loss that often results in a lifelong battle to regain independence and improve quality of life.... Read more

General/Advanced Imaging

view channel
Image: The rugged and miniaturized CT scanner is being designed for use beyond a typical hospital setting (Photo courtesy of Micro-X)

World’s First Mobile Whole-Body CT Scanner to Provide Diagnostics at POC

Conventional CT scanners dominate the global medical imaging market, holding approximately 30% of the market share. These scanners are the current standard for various diagnostic applications, including... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.