We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Gene Variations Can Predict Radiation-Induced Toxicity Risk

By MedImaging International staff writers
Posted on 04 Aug 2014
Key genetic variants may affect how cancer patients respond to radiation treatments, according to new research. Scientists discovered that differences in the TANC1 (tetratricopeptide repeat, ankyrin repeat and coiled-coil containing 1) gene are associated with a greater risk for radiation-fueled side effects in prostate cancer patients, which include impotence, diarrhea, and incontinence.

These findings, published July 2014 in Nature Genetics, are based on a genome-wide association study, a type of study in which researchers studied a variety of genetic variants to see if any of them are tied to a specific type of complication, which could sometimes appear years after treatment was completed.

“Our findings, which were replicated in two additional patient groups, represent a significant step towards developing personalized treatment plans for prostate cancer patients,” said Barry S. Rosenstein, PhD, professor, radiation oncology, genetics and genomic sciences, Icahn School of Medicine at Mount Sinai (New York, NY, USA), the lead Mount Sinai investigator on the study. “Within five years, through the use of a predictive genomic test that will be created using the data obtained in the recent study, it may be possible to optimize treatment for a large number of cancer patients.”

For the study, Dr. Rosenstein and his colleagues obtained blood samples from nearly 400 patients who were receiving radiotherapy treatment for prostate cancer. The blood samples were screened for roughly one million genetic markers, and each patient was monitored for at least two years to monitor incidents of side effects from the radiation. Data analysis revealed which genetic markers were consistently associated with the development of complications following radiotherapy.

“The next step is to validate the results, and see if the same markers predict similar outcomes in patients with other forms of cancer,” said Dr. Rosenstein. Using the genomic test being developed, treatment plans can be adjusted to curtail adverse effects thereby allowing for an improved quality life for many cancer survivors.

Related Links:

Icahn School of Medicine at Mount Sinai


Pocket Fetal Doppler
CONTEC10C/CL
Digital Radiographic System
OMNERA 300M
Breast Localization System
MAMMOREP LOOP
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices

Channels

Nuclear Medicine

view channel
Image: A bone cancer cell showing supportive fibers (in red), genetic material (in blue), and the specific target protein LRRC15 (in green) (Photo courtesy of Ulmert Laboratory)

Radiotheranostic Approach Detects, Kills and Reprograms Aggressive Cancers

Aggressive cancers such as osteosarcoma and glioblastoma often resist standard therapies, thrive in hostile tumor environments, and recur despite surgery, radiation, or chemotherapy. These tumors also... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.