We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Neuronal Cytoskeleton and Cytomechanics Shown to Be Altered by Cranial Radiotherapy at a Specific Dose

By MedImaging International staff writers
Posted on 07 Aug 2014
Print article
Image: Under the atomic force microscope, the cytoskeletal protein structures became fuzzy or even collapsed after X-ray irradiation (Photo courtesy of Neural Regeneration Research journal).
Image: Under the atomic force microscope, the cytoskeletal protein structures became fuzzy or even collapsed after X-ray irradiation (Photo courtesy of Neural Regeneration Research journal).
Chinese researchers have discovered that radiation-induced neuronal injury was more apparent after cranial radiation therapy.

Cranial radiotherapy is one of the most significant therapeutic strategies for the treatment of various types of primary and metastatic brain tumors. Although traditional photon irradiation has significantly enhances the treatment of cancer, the central nervous system is prone to damage after high-dose irradiation, resulting in severe delayed or progressive nervous tissue injury.

The issues regarding brain radiation injury have been widely discussed, and recent studies have emphasized changes in pathomorphology. However, the underlying mechanism remains elusive, according to the invesigators, from the School of Stomatology, Lanzhou University (Lanzhou, Gansu Province, China).

Under atomic force microscopy, the neuronal membrane appeared rough and neuronal rigidity had increased. The depolymerization, misfolding, or denaturation of microtubule-associated proteins might contribute to the destruction of the nutrient transport channel within cells after radiation injury. Moreover, some hidden apoptosis-related genes are released through the regulation of several signals, thereby activating apoptosis and inducing acute radiation injury.

These research data also revealed that X-rays generated much more sever radiation injury to cortical neurons than a heavy ion beam, suggesting that the heavy ion beam has a biologic advantage over X-rays. This could provide a hypothetic foundation for effectively improving the protection of normal brain tissue in future cranial radiotherapy, according to the scientists.

This article was published June 1, 2014, in the journal Neural Regeneration Research.

Related Links:

Lanzhou University


Portable Color Doppler Ultrasound Scanner
DCU10
New
MRI System
Ingenia Prodiva 1.5T CS
3T MRI Scanner
MAGNETOM Cima.X
Wall Fixtures
MRI SERIES

Print article

Channels

Ultrasound

view channel
Image: The novel method of fighting cancer can stimulate critical cytokine secretion in T cells

Ultrasound-Directed Microbubbles Boost Immune Response Against Tumors

A significant challenge in cancer treatment is the tumor's ability to suppress the immune system, particularly by deactivating T cells that enter the tumor. Once inside, the tumor can inhibit T cells from... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–positron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.