We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




X-ray Technique Visualizes Microscopic Structures in Brain

By MedImaging International staff writers
Posted on 29 Sep 2016
Print article
Image: The surface representation of a Purkinje cell with the main part of its dendritic tree (Photo courtesy of the University of Basel).
Image: The surface representation of a Purkinje cell with the main part of its dendritic tree (Photo courtesy of the University of Basel).
A novel X-ray imaging technique can be used to identify individual Purkinje cells in the cerebellum, according to a new study.

Researchers at the University of Basel (UB; Switzerland) and University Hospital of Basel (Switzerland) have developed a specific mathematical filter for use with X-ray phase tomography that can visualize a volume of up to 43 mm3 of human post mortem or biopsy brain samples in three dimensions (3D), with automatic cell feature quantification at isotropic resolution in a label-free manner. The researchers used synchrotron radiation to determine local phase shifts, which provided better contrast than conventional X-ray techniques that rely on the attenuation of X-rays.

Using the technique, they succeeded in setting a pixel size of 0.45 micrometers, a hundred times smaller than the diameter of a human hair. The researchers then demonstrated the method on the cerebellum, automatically identifying 5,000 Purkinje cells with an error of less than 5%, and determined that the local surface density was 165 cells per mm2, on average. They also used the 3D data to segment sub-cellular structures, including the dendritic tree and Purkinje cell nucleoli, without the need for dedicated staining. The study was published in the September 2016 issue of Scientific Reports.

“Detailed insight into the cellular structures of the cerebellum enables, for example, a better description of motor function, coordination, and balance regulation. Moreover, morphological changes due to disease such as neurodegeneration should become better recognized on the basis of the 3D imaging data,” concluded lead author Simone Hieber, PhD, of the UB department of biomedical engineering, and colleagues. “In combination with the specific software, this approach could contribute to a better understanding and treatment of neurodegenerative diseases.”

Purkinje cells are large neurons with many branching extensions that are found in the cortex of the cerebellum, and which play a fundamental role in controlling motor movement. They are characterized by cell bodies that are flask-like in shape, by numerous branching dendrites, and by a single long axon. Purkinje cells release gamma-aminobutyric acid (GABA), a neurotransmitter that inhibits transmission of nerve impulses, which allows the cells to regulate and coordinate motor movements. The cells were first discovered in 1837 by Czech physiologist Jan Evangelista Purkinje.

Related Links:
University of Basel
University Hospital of Basel
Computed Tomography System
Aquilion ONE / INSIGHT Edition
NMUS & MSK Ultrasound
InVisus Pro
Radiology Software
DxWorks
Portable Color Doppler Ultrasound System
S5000

Print article

Channels

Ultrasound

view channel
Image: Ultrasound detection of vascular changes post-RT corresponds to shifts in the immune microenvironment (Photo courtesy of Theranostics, DOI:10.7150/thno.97759)

Ultrasound Imaging Non-Invasively Tracks Tumor Response to Radiation and Immunotherapy

While immunotherapy holds promise in the fight against triple-negative breast cancer, many patients fail to respond to current treatments. A major challenge has been predicting and monitoring how individual... Read more

Nuclear Medicine

view channel
Image: Autoradiography images showing binding of [18F]flortaucipir, [18F]MK6240, and [18F]PI2620 in prefrontal cortex, hippocampus, and cerebellum (A) and in whole-brain hemisphere (B) of control and AD brains (Photo courtesy of UFRGS)

Next-Gen Tau Radiotracers Outperform FDA-Approved Imaging Agents in Detecting Alzheimer’s

In Alzheimer’s disease, tau tangles are closely linked to cognitive decline: the greater the number of tangles, the more severe the cognitive impairment. By measuring the amount of tau in brain tissue... Read more

General/Advanced Imaging

view channel
Image: The rugged and miniaturized CT scanner is being designed for use beyond a typical hospital setting (Photo courtesy of Micro-X)

World’s First Mobile Whole-Body CT Scanner to Provide Diagnostics at POC

Conventional CT scanners dominate the global medical imaging market, holding approximately 30% of the market share. These scanners are the current standard for various diagnostic applications, including... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.