We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




X-ray Technique Visualizes Microscopic Structures in Brain

By MedImaging International staff writers
Posted on 29 Sep 2016
Print article
Image: The surface representation of a Purkinje cell with the main part of its dendritic tree (Photo courtesy of the University of Basel).
Image: The surface representation of a Purkinje cell with the main part of its dendritic tree (Photo courtesy of the University of Basel).
A novel X-ray imaging technique can be used to identify individual Purkinje cells in the cerebellum, according to a new study.

Researchers at the University of Basel (UB; Switzerland) and University Hospital of Basel (Switzerland) have developed a specific mathematical filter for use with X-ray phase tomography that can visualize a volume of up to 43 mm3 of human post mortem or biopsy brain samples in three dimensions (3D), with automatic cell feature quantification at isotropic resolution in a label-free manner. The researchers used synchrotron radiation to determine local phase shifts, which provided better contrast than conventional X-ray techniques that rely on the attenuation of X-rays.

Using the technique, they succeeded in setting a pixel size of 0.45 micrometers, a hundred times smaller than the diameter of a human hair. The researchers then demonstrated the method on the cerebellum, automatically identifying 5,000 Purkinje cells with an error of less than 5%, and determined that the local surface density was 165 cells per mm2, on average. They also used the 3D data to segment sub-cellular structures, including the dendritic tree and Purkinje cell nucleoli, without the need for dedicated staining. The study was published in the September 2016 issue of Scientific Reports.

“Detailed insight into the cellular structures of the cerebellum enables, for example, a better description of motor function, coordination, and balance regulation. Moreover, morphological changes due to disease such as neurodegeneration should become better recognized on the basis of the 3D imaging data,” concluded lead author Simone Hieber, PhD, of the UB department of biomedical engineering, and colleagues. “In combination with the specific software, this approach could contribute to a better understanding and treatment of neurodegenerative diseases.”

Purkinje cells are large neurons with many branching extensions that are found in the cortex of the cerebellum, and which play a fundamental role in controlling motor movement. They are characterized by cell bodies that are flask-like in shape, by numerous branching dendrites, and by a single long axon. Purkinje cells release gamma-aminobutyric acid (GABA), a neurotransmitter that inhibits transmission of nerve impulses, which allows the cells to regulate and coordinate motor movements. The cells were first discovered in 1837 by Czech physiologist Jan Evangelista Purkinje.

Related Links:
University of Basel
University Hospital of Basel
X-Ray Illuminator
X-Ray Viewbox Illuminators
Ultra-Flat DR Detector
meX+1717SCC
Silver Member
X-Ray QA Meter
T3 AD Pro
Computed Tomography System
Aquilion ONE / INSIGHT Edition

Print article

Channels

MRI

view channel
Image: The AI tool can help interpret and assess how well treatments are working for MS patients (Photo courtesy of Shutterstock)

AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans

Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more

Nuclear Medicine

view channel
Image: In vivo imaging of U-87 MG xenograft model with varying mass doses of 89Zr-labeled KLG-3 or isotype control (Photo courtesy of L Gajecki et al.; doi.org/10.2967/jnumed.124.268762)

Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors

Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.