We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Mobile Phone Analysis Helps Reveal Radiation Exposure

By MedImaging International staff writers
Posted on 08 Jun 2017
Print article
Image: A new study indicates mobile phone resistors could be used to retrospectively measure radiation dosage (Photo courtesy of Lund University).
Image: A new study indicates mobile phone resistors could be used to retrospectively measure radiation dosage (Photo courtesy of Lund University).
An analysis of mobile phones and other objects in close proximity with the body could be used in retrospective dosimetry, according to a new study.

Researchers at Lund University (Sweden) conducted a study that examined a number of objects and materials held close the body, and which therefore have a potential to provide information on whether the carrier has been exposed to ionizing radiation in the absence of dosimeters. Among the objects examined were mobile phones, teeth and dental fillings, household salt, and desiccant drying agents. The study showed that several of the materials contained very promising properties, not least of them mobile phones.

Mobile phones contain resistors made from aluminum oxide (AlO), which can provide information about radiation as late as six years after the time of exposure. During analysis, the phone is dismantled and the resistor is examined using a light-sensitive measuring technique called optically stimulated luminescence (OSL), with results in two hours. The researchers also developed initial estimations of conversion factors for the transition between radiation dose and dosemeter material using an anthropomorphic phantom. The study was presented as a doctoral thesis at Lund University.

“In case of a nuclear power plant disaster, many people are worried, even when only a small number of people have been exposed to harmful levels of radiation,” said lead author medical physicist Therése Geber-Bergstrand, MSc, a doctoral student at Lund University. “The results from the mobile phones were very promising. Even though further studies are required, the phones can be used right away.”

OSL involves the stimulation of trapped electrons performed using light of a specific wavelength. The stimulation with light can be performed using different modes: continuous wave (CW-OSL), linearly modulated (LM-OSL), and pulsed (POSL). The CW-OSL mode is the most frequently used, with the intensity of the stimulation light kept constant and the luminescence recorded during stimulation. This involves using filters to discriminate between the stimulation light and the luminescence.

Related Links:
Lund University

Digital Radiographic System
OMNERA 300M
X-Ray Illuminator
X-Ray Viewbox Illuminators
Radiology Software
DxWorks
Portable Color Doppler Ultrasound Scanner
DCU10

Print article

Channels

MRI

view channel
Image: Comparison showing 3T and 7T scans for the same participant (Photo courtesy of P Simon Jones/University of Cambridge)

Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients

Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more

Ultrasound

view channel
Image: The new type of Sonogenetic EchoBack-CAR T cell (Photo courtesy of Longwei Liu/USC)

Smart Ultrasound-Activated Immune Cells Destroy Cancer Cells for Extended Periods

Chimeric antigen receptor (CAR) T-cell therapy has emerged as a highly promising cancer treatment, especially for bloodborne cancers like leukemia. This highly personalized therapy involves extracting... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.