We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Breakthrough Technology Generates 3D Color X-rays

By MedImaging International staff writers
Posted on 23 Jul 2018
Print article
Image: Professor Phil Butler\'s wrist, including his watch (Photo courtesy of MARS Bioimaging).
Image: Professor Phil Butler\'s wrist, including his watch (Photo courtesy of MARS Bioimaging).
Using hybrid pixel-detector technology, a novel three-dimensional (3D) scanner can assign colors to different X-ray photons energy levels, thus identifying water, calcium, and disease markers.

Researchers at the University of Canterbury (Christchurch, New Zealand), the University of Otago (Christchurch, New Zealand), and other institutions worldwide participating in the CERN Medipix collaboration have successfully scanned human tissues using a breakthrough color medical scanner developed by MARS Bioimaging (Christchurch, New Zealand), which is based on Medipix3 technology.

Initially developed to address the needs of particle tracking at the CERN Large Hadron Collider, the MARS solution couples the spectroscopic information generated by the Medipix3-enabled detector with powerful algorithms to generate 3D images. By assigning different energy levels of the X-ray photons to distinct colors, the scanner can display high-resolution, high-contrast, and reliable images. A version of the MARS scanner has so far been used to study cancer, bone and joint health, and vascular disease. In the coming months, orthopedic and rheumatology patients in New Zealand will be scanned in a clinical trial of the technology.

“X-ray spectral information allows health professionals to measure the different components of body parts such as fat, water, calcium, and disease markers. Traditional black-and-white x-rays only allow measurement of the density and shape of an object,” said Professor Anthony Butler, PhD, of the University of Otago. “As a new imaging device, a new microscope if you like, biomedical researchers can non-invasively see different kinds of detail inside patients. In all of these studies, promising early results suggest that when spectral imaging is routinely used in clinics, it will enable more accurate diagnosis and personalization of treatment.”

The Medipix3 is a complementary metal-oxide-semiconductor (CMOS) pixel detector readout chip designed to be connected to a segmented semiconductor sensor. It acts as a camera, taking images based on the number of particles, which hit the pixels when the electronic shutter is open. A novel charge summing and allocation scheme is implemented at the pixel level, permitting proper binning of the energy of incoming photons in order to overcome the effects of fluorescence and charge diffusion.

Related Links:
University of Canterbury
University of Otago
MARS Bioimaging

New
Digital X-Ray Detector Panel
Acuity G4
Radiology Software
DxWorks
New
Transducer Covers
Surgi Intraoperative Covers
New
Digital Radiography System
DigiEye 330

Print article

Channels

Ultrasound

view channel
Image: The addition of POC ultrasound can enhance first trimester obstetrical care (Photo courtesy of 123RF)

POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits

A new study has found that implementing point-of-care ultrasounds (POCUS) in clinics to assess the viability and gestational age of pregnancies in the first trimester improved care for pregnant patients... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–positron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.