We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Algorithm Identifies Abnormal Chest X-Rays

By MedImaging International staff writers
Posted on 01 Oct 2018
Print article
Image: AI algorithms match radiologists in detecting pathologies on chest X-rays and CT (Photo courtesy of Qure.ai).
Image: AI algorithms match radiologists in detecting pathologies on chest X-rays and CT (Photo courtesy of Qure.ai).
A clinical validation study confirms that an artificial intelligence (AI) driven algorithm can differentiate between normal and abnormal x-rays with unprecedented accuracy.

Researchers at Columbia Asia Hospitals (Kuala Lumpur, Malaysia) and Qure.ai (San Mateo, CA, USA) trained a deep learning system to identify abnormal x-rays using 1.2 million x-rays and their corresponding radiology reports. Specific x-ray abnormalities included blunted costophrenic angle, calcification, cardiomegaly, cavity, consolidation, fibrosis, hilar enlargement, opacity and pleural effusion, among others. The system was tested against a three-radiologist majority analysis based on an independent, retrospectively collected, and de-identified set of 2,000 x-rays.

The results showed that the deep learning AI system was highly accurate in detecting 15 abnormalities on chest x-rays at near-radiologist identification levels, with more than 90% accuracy. The chest clinical validation study joins a previous clinical study that confirmed the Qure.ai qER deep learning algorithm can identify bleeds, fractures, and other critical trauma in head computerized tomography (CT) scans, with more than 95% accuracy. The chest study was published on July 18, 2018, in arXiv.org.

“The chest x-ray is a valuable health screening tool and a vital component of public health programs worldwide. The enormous volume produced each year creates an ever-increasing demand for radiologists,” said study co-author Shalini Govil, MD, of the Columbia Asia Hospitals radiology group. “Unfortunately, numerous chest x-rays displaying significant pathology are left neglected in piles of backlogs due to a lack of available radiologists to report them. Through semi-automation of the reporting process, AI can significantly reduce a radiologist's workload, improve report accuracy, reduce turnaround time, and save lives.”

“This is the largest training dataset ever for a chest x-ray AI. It's also the largest validation study to date, measured against 2,000 x-rays, each read by three radiologists,” said senior author Prashant Warier, CEO and co-founder of Qure.ai. “This is an exciting time for deep learning technologies in medicine. As these systems increase in accuracy, so will the viability of using deep learning to extend the reach of chest x-ray interpretation, improve reporting efficiency, and save lives.”

Deep learning is part of a broader family of AI machine learning methods based on data representations, as opposed to task specific algorithms. It involves neural network algorithms that use a cascade of many layers of nonlinear processing units for feature extraction and transformation, with each successive layer using the output from the previous layer as input, forming a hierarchical representation.

Related Links:
Columbia Asia Hospitals
Qure.ai

Radiation Therapy Treatment Software Application
Elekta ONE
New
X-ray Diagnostic System
FDX Visionary-A
New
Mini C-arm Imaging System
Fluoroscan InSight FD
New
Ultrasound Table
General 3-Section Top EA Ultrasound Table

Print article

Channels

Ultrasound

view channel
Image: The addition of POC ultrasound can enhance first trimester obstetrical care (Photo courtesy of 123RF)

POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits

A new study has found that implementing point-of-care ultrasounds (POCUS) in clinics to assess the viability and gestational age of pregnancies in the first trimester improved care for pregnant patients... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–positron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.