We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Algorithm Identifies Abnormal Chest X-Rays

By MedImaging International staff writers
Posted on 01 Oct 2018
Print article
Image: AI algorithms match radiologists in detecting pathologies on chest X-rays and CT (Photo courtesy of Qure.ai).
Image: AI algorithms match radiologists in detecting pathologies on chest X-rays and CT (Photo courtesy of Qure.ai).
A clinical validation study confirms that an artificial intelligence (AI) driven algorithm can differentiate between normal and abnormal x-rays with unprecedented accuracy.

Researchers at Columbia Asia Hospitals (Kuala Lumpur, Malaysia) and Qure.ai (San Mateo, CA, USA) trained a deep learning system to identify abnormal x-rays using 1.2 million x-rays and their corresponding radiology reports. Specific x-ray abnormalities included blunted costophrenic angle, calcification, cardiomegaly, cavity, consolidation, fibrosis, hilar enlargement, opacity and pleural effusion, among others. The system was tested against a three-radiologist majority analysis based on an independent, retrospectively collected, and de-identified set of 2,000 x-rays.

The results showed that the deep learning AI system was highly accurate in detecting 15 abnormalities on chest x-rays at near-radiologist identification levels, with more than 90% accuracy. The chest clinical validation study joins a previous clinical study that confirmed the Qure.ai qER deep learning algorithm can identify bleeds, fractures, and other critical trauma in head computerized tomography (CT) scans, with more than 95% accuracy. The chest study was published on July 18, 2018, in arXiv.org.

“The chest x-ray is a valuable health screening tool and a vital component of public health programs worldwide. The enormous volume produced each year creates an ever-increasing demand for radiologists,” said study co-author Shalini Govil, MD, of the Columbia Asia Hospitals radiology group. “Unfortunately, numerous chest x-rays displaying significant pathology are left neglected in piles of backlogs due to a lack of available radiologists to report them. Through semi-automation of the reporting process, AI can significantly reduce a radiologist's workload, improve report accuracy, reduce turnaround time, and save lives.”

“This is the largest training dataset ever for a chest x-ray AI. It's also the largest validation study to date, measured against 2,000 x-rays, each read by three radiologists,” said senior author Prashant Warier, CEO and co-founder of Qure.ai. “This is an exciting time for deep learning technologies in medicine. As these systems increase in accuracy, so will the viability of using deep learning to extend the reach of chest x-ray interpretation, improve reporting efficiency, and save lives.”

Deep learning is part of a broader family of AI machine learning methods based on data representations, as opposed to task specific algorithms. It involves neural network algorithms that use a cascade of many layers of nonlinear processing units for feature extraction and transformation, with each successive layer using the output from the previous layer as input, forming a hierarchical representation.

Related Links:
Columbia Asia Hospitals
Qure.ai

Silver Member
X-Ray QA Meter
T3 AD Pro
New
Ultrasonic Pocket Doppler
SD1
Radiation Therapy Treatment Software Application
Elekta ONE
New
HF Stationary X-Ray Machine
TR20G

Print article

Channels

Ultrasound

view channel
Image: The model trained on echocardiography, can identify liver disease in people without symptoms (Photo courtesy of 123RF)

Artificial Intelligence Detects Undiagnosed Liver Disease from Echocardiograms

Echocardiography is a diagnostic procedure that uses ultrasound to visualize the heart and its associated structures. This imaging test is commonly used as an early screening method when doctors suspect... Read more

Nuclear Medicine

view channel
Image: A repurposed ALS drug has become an imaging probe to help diagnose neurodegeneration (Photo courtesy of St. Jude Children’s Research Hospital)

Innovative PET Imaging Technique to Help Diagnose Neurodegeneration

Neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease, are often diagnosed only after physical symptoms appear, by which time treatment may no longer be effective.... Read more

General/Advanced Imaging

view channel
Image: Whole-brain PACT system and in vivo morphological imaging (Photo courtesy of Advanced Science)

Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring

Stroke is the second leading cause of death globally, claiming millions of lives each year. Ischemic stroke, in particular, occurs when a blood vessel that supplies blood to the brain becomes blocked.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.