We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Improves X-Ray Identification of Pacemakers

By MedImaging International staff writers
Posted on 09 Apr 2019
Print article
Artificial intelligence (AI) software can help determine the make and model of implanted cardiac rhythm devices (CRDs) more accurately and quickly than current methods, according to a new study.

The software, developed at Imperial College London (Imperial; United Kingdom), will help emergency staff do away with current approaches to determine the model of a pacemaker or defibrillator, which involves comparing a CRD’s radiographic appearance with a manual flow chart. For the study, the researchers extracted the radiographic images of 45 CRD models from five manufacturers. A convolutional neural network (CNN) was then developed using a training set of 1,451 images. The CNN was then tested on a set contained an additional 225 images, consisting of five examples of each model.

The network’s ability to identify the manufacturer of a device was then compared to cardiologists using a flowchart. The results showed the CNN was 99.6% accurate in identifying the manufacturer of a device, and 96.4% accurate in identifying the model group. Among the five cardiologists who used the flowchart, median identification of manufacturer accuracy was 72%, and model group identification was not possible. The study was published on March 27, 2019, in JACC: Clinical Electrophysiology.

“Pacemakers and defibrillators have improved the lives of millions of patients. However, in some rare cases these devices can fail and patients can deteriorate as a result. In these situations, clinicians must quickly identify the type of device a patient has so they can provide treatment such as changing the device's settings or replacing the leads,” said lead author James Howard, MD. “Unfortunately, current methods are slow and outdated, and there is a real need to find new and improved ways of identifying devices during emergency settings.”

CNN’s use a cascade of many layers of nonlinear processing units for feature extraction and transformation, with each successive layer using the output from the previous layer as input to form a hierarchical representation.

Related Links:
Imperial College London

Mobile Barrier
Tilted Mobile Leaded Barrier
Opaque X-Ray Mobile Lead Barrier
2594M
New
Mammo 3D Performance Kits
Mammo 3D Performance Kits
New
Portable X-ray Unit
AJEX140H

Print article

Channels

Ultrasound

view channel
Image: The addition of POC ultrasound can enhance first trimester obstetrical care (Photo courtesy of 123RF)

POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits

A new study has found that implementing point-of-care ultrasounds (POCUS) in clinics to assess the viability and gestational age of pregnancies in the first trimester improved care for pregnant patients... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–positron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.