We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Production Method for Medical-Grade Radioisotopes

By MedImaging International staff writers
Posted on 24 Jun 2019
Print article
A novel technique enables simultaneous production of molybdenum-99 (Mo-99) and other isotopes without the need for highly enriched, weapons-grade uranium.

Developed by BGN Technologies (Beer Sheva; Israel), the technique uses the naturally occurring and stable molybdenum-100 (Mo-100) isotope and a linear electron accelerator to generate Mo-99 and technetium-99m (Tc-99m). The molybdenum target acts both as a bremsstrahlung converter for the incident electron beam, and simultaneously as a Mo-99 producing target via the 100Mo(γ,n)99Mo reaction on bremsstrahlung photons. Even higher rates of molybdenum yield could be achieved by optimizing the target geometry.

The same process can also be used to simultaneously generate other short-lived radioisotopes such as 18F, 15O, 13N and 11C, which can be used as byproducts for use in positron emission tomography (PET) scans. The technology was co-developed by Alexander Tsechanski, PhD, from the department of nuclear engineering at Ben-Gurion University (BGU; Beer Sheva, Israel), and D. V. Fedorchenko, PhD, from the National Science Center Kharkov Institute of Physics and Technology (Ukraine).

“Technetium-99m is a metastable nuclear isomer of technetium-99 that is used in tens of millions of medical diagnostic procedures annually, making it the most commonly used medical radioisotope. The need for uranium and a nuclear reactor to produce this radioisotope is creating a shortage of this important substance,” said Zafrir Levy, senior vice president for business development, exact sciences, and engineering at BGN Technologies. “Tsechanski’s innovation offers a more feasible, cost-effective method, using cheaper electron accelerators for generating Mo99/Tc-99m. We are currently looking for partners for further developing and commercializing this important invention.”

The most important medical isotope, Tc-99m, is obtained from the decay of its parent Mo-99, and is used in more than 80% of all nuclear medicine procedures. Mo-99 is packed into source containment vessels and distributed to hospitals, where nuclear medicine specialists can draw off the Tc-99m as needed for about a week. Because of its unstable nature, Mo-99 does not occur naturally and is traditionally produced using nuclear research reactors powered by enriched uranium in Canada, the Netherlands, Belgium, France, Australia, and South Africa.

Related Links:
BGN Technologies
Ben-Gurion University
National Science Center Kharkov Institute of Physics and Technology

Multi-Use Ultrasound Table
Clinton
Opaque X-Ray Mobile Lead Barrier
2594M
New
Mini C-arm Imaging System
Fluoroscan InSight FD
New
Portable HF X-Ray Machine
PORTX

Print article

Channels

Ultrasound

view channel
Image: The addition of POC ultrasound can enhance first trimester obstetrical care (Photo courtesy of 123RF)

POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits

A new study has found that implementing point-of-care ultrasounds (POCUS) in clinics to assess the viability and gestational age of pregnancies in the first trimester improved care for pregnant patients... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–positron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.