We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Single Chest X-Ray Predicts Mortality Risk

By MedImaging International staff writers
Posted on 08 Aug 2019
Print article
A new study suggests that a convolutional neural network (CNN) can stratify all-cause mortality risk based on a single chest radiograph.

Developed at Massachusetts General Hospital (MGH; Boston, USA), Harvard Medical School (HMS; Boston, MA, USA), and other institutions, the CNN algorithm, named CXR-risk, uses data from radiologists' diagnostic findings (such as presence of a lung nodule) on a chest x-ray, and combines it with other risk factors, including age, sex and comorbidities in order to predict long-term mortality, including non-cancer death. A deep learning CXR-risk score (very low, low, moderate, high, and very high) is generated based on CNN analysis of a submitted radiograph.

To develop the CNN, the researchers used 41,856 x-rays from the screening radiography arm of the Prostate, Lung, Colorectal, and Ovarian (PLCO) cancer screening trial, a community cohort of asymptomatic nonsmokers and smokers enrolled at 10 U.S. sites from November 8, 1993, through July 2, 2001. The results of the CNN were tested in a further 10,464 cases from the screening radiography arm of the National Lung Screening Trial (NLST), a community cohort of heavy smokers enrolled at 21 U.S. sites from August 2002 through April 2004.

The results revealed a graded association between CXR-risk score and mortality. The very high-risk group had an all-cause mortality of 53% (PLCO) and 33.9% (NLST), compared with the very low-risk group. The association was robust to adjustment for radiologists’ findings and risk factors. Comparable results were seen for lung cancer death, non-cancer cardiovascular death, and respiratory death. The study was published on July 19, 2019, in JAMA Network Open.

“We get chest x-rays to make a diagnosis like pneumonia, but our study shows that there is also free prognostic information about health and longevity on the images. Based on the chest x-ray image alone, AI identified people at up to a 53% risk of death over 12 years,” said lead author Michael Lu, MD, MPH, of MGH and HMS. “Scores calculated using AI may incentivize high-risk individuals to lower their chance of dying with prevention, regular screening, and lifestyle modification.”

Deep learning is part of a broader family of AI machine learning methods based on learning data representations, as opposed to task specific algorithms. It involves CNN algorithms that use a cascade of many layers of nonlinear processing units for feature extraction, conversion and transformation, with each successive layer using the output from the previous layer as input to form a hierarchical representation.

Related Links:
Massachusetts General Hospital
Harvard Medical School

Radiation Therapy Treatment Software Application
Elekta ONE
Portable Color Doppler Ultrasound Scanner
DCU10
Portable X-ray Unit
AJEX140H
Wall Fixtures
MRI SERIES

Print article

Channels

MRI

view channel
Image: The AI tool can help interpret and assess how well treatments are working for MS patients (Photo courtesy of Shutterstock)

AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans

Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more

Nuclear Medicine

view channel
Image: In vivo imaging of U-87 MG xenograft model with varying mass doses of 89Zr-labeled KLG-3 or isotype control (Photo courtesy of L Gajecki et al.; doi.org/10.2967/jnumed.124.268762)

Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors

Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.