We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Deep Learning Model Accurately Classifies Chest X-Rays

By MedImaging International staff writers
Posted on 16 Dec 2019
Print article
Image: Chest X-ray of a pneumothorax missed by radiologist (L), but identified by the DL model (R) (Photo courtesy of Google Health)
Image: Chest X-ray of a pneumothorax missed by radiologist (L), but identified by the DL model (R) (Photo courtesy of Google Health)
Combining deep learning (DL) models with adjudicated image labels can help classify clinically important findings on chest X-rays, claims a new study.

Researchers at Google Health (Mountain View, CA), Apollo Radiology International (Hyderabad, India), California Advanced Imaging (Novato, USA), and other institutions have developed DL models that can accurately classify four clinically important chest X-ray findings - pneumothorax, nodules and masses, fractures, and airspace opacities. The target findings were selected in consultation with radiologists and clinical colleagues, so as to focus on conditions that are both critical for patient care, and for which chest X-ray images alone are an important and accessible first-line imaging study.

To do so, they used two large data sets. The first included 759,611 images from the Apollo Hospitals network (Hyderabad, India), and the second was drawn from a publicly available set of 112,120 images. Natural language processing and expert review of a small subset of images were then used to provide labels for 657,954 training images, with reference standards defined by four radiologists. The results showed that for all four radiologic findings, and across both datasets, DL models exhibited radiologist-level performance. The study was published on December 3, 2019, in Radiology.

“Achieving expert-level accuracy on average is just a part of the story. Even though overall accuracy for the DL models was consistently similar to that of radiologists for any given finding, performance for both varied across datasets,” said senior author Shravya Shetty, MSc, technical lead of Google Health. “This highlights the importance of validating deep learning tools on multiple, diverse datasets, and eventually across the patient populations and clinical settings in which any model is intended to be used.”

With millions of diagnostic examinations performed annually worldwide, chest X-rays are an important and accessible clinical imaging tool for the detection of many diseases. However, their usefulness can be limited by challenges in interpretation, which requires rapid, thorough evaluation of a two-dimensional image depicting complex, three-dimensional (3D) organs and disease processes. As a result, early-stage lung cancers or pneumothoraces (collapsed lungs) can often be missed, potentially leading to serious adverse outcomes.

Related Links:
Google Health
Apollo Radiology International
California Advanced Imaging


New
X-ray Diagnostic System
FDX Visionary-A
New
Portable HF X-Ray Machine
PORTX
New
Transducer Covers
Surgi Intraoperative Covers
New
MRI System
Ingenia Prodiva 1.5T CS

Print article

Channels

Ultrasound

view channel
Image: The addition of POC ultrasound can enhance first trimester obstetrical care (Photo courtesy of 123RF)

POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits

A new study has found that implementing point-of-care ultrasounds (POCUS) in clinics to assess the viability and gestational age of pregnancies in the first trimester improved care for pregnant patients... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–positron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.