Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Improves X-Ray Hip Fracture Diagnosis

By MedImaging International staff writers
Posted on 10 Aug 2020
Using artificial intelligence (AI) algorithms to analyze x-ray images improves radiologist identification of hip fractures, according to a new study.

Developed by researchers at Teikyo University (Tokyo, Japan), the University of Occupational and Environmental Health (Fukuoka, Japan), and other institutions, the deep convolutional neural network (CNN) for detecting hip fractures from x-rays used computerized tomography (CT) and magnetic resonance imaging (MRI) as a gold standard for comparison. The study involved 327 patients who underwent pelvic CT or MRI and were diagnosed with proximal femoral fractures; the AI algorithm was trained with 302 of these exams.

The remaining 25 cases and another 25 control subjects were then used to test the DCNN, with seven readers taking part in this study; a continuous rating scale recorded each observer's confidence level. Subsequently, each observer interpreted the x-rays with the CNN outputs and rated them again. The area under the curve (AUC) was then used to compare the fracture detection. The results showed the average AUC of the readers was 0.832; the AUC of DCNN alone was 0.905; and the average AUC of the readers with CNN outputs was 0.876. The study was published on July 23, 2020, in the European Journal of Radiology.

“The study results show that AI offers a number of benefits for this particular clinical scenario. Deep CNN may have the potential to identify additional abstract features that have not been apparent to the human reader,” concluded lead author Tsubasa Mawatari, PhD, and colleagues. “The combination could mitigate the at-times challenging task of spotting hip fractures on x-ray, increase the efficiency of diagnosis, and expand access to ‘expert level’ medical image interpretation.”

Deep learning is part of a broader family of AI machine learning methods based on learning data representations, as opposed to task specific algorithms. It involves CNN algorithms that use a cascade of many layers of nonlinear processing units for feature extraction, conversion, and transformation, with each successive layer using the output from the previous layer as input to form a hierarchical representation.

Related Links:

Teikyo University
University of Occupational and Environmental Health

New
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices
Computed Tomography System
Aquilion ONE / INSIGHT Edition
New
Mobile Cath Lab
Photon F65/F80
New
MRI Infusion Workstation
BeneFusion MRI Station
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get complete access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

MRI

view channel
Image: The AI tool can help interpret and assess how well treatments are working for MS patients (Photo courtesy of Shutterstock)

AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans

Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.