We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Artificial Intelligence Accurately Detects Fractures on X-Rays

By MedImaging International staff writers
Posted on 23 Dec 2021
Print article
Illustration
Illustration

A new study has found that artificial intelligence (AI) can help physicians in interpreting X-rays after an injury and suspected fracture.

The AI algorithm (AI BoneView) developed by researchers at the Boston University School of Medicine (Boston, MA, USA) was trained on a very large number of X-rays from multiple institutions to detect fractures of the limbs, pelvis, torso and lumbar spine and rib cage. Expert human readers (musculoskeletal radiologists, who are sub-specialized radiology doctors after receiving focused training on reading bone X-rays) defined the gold standard in this study and compared the performance of human readers with and without AI assistance.

Emergency room and urgent care clinics are typically busy and patients often have to wait many hours before they can be seen, evaluated and receive treatment. Waiting for X-rays to be interpreted by radiologists can contribute to this long wait time because radiologists often read X-rays for a large number of patients. Fracture interpretation errors represents up to 24% of harmful diagnostic errors seen in the emergency department. Furthermore, inconsistencies in radiographic diagnosis of fractures are more common during the evening and overnight hours (5 p.m. to 3 a.m.), likely related to non-expert reading and fatigue.

In the study, a variety of readers were used to simulate real life scenario, including radiologists, orthopedic surgeons, emergency physicians and physician assistants, rheumatologists, and family physicians, all of whom read X-rays in real clinical practice to diagnose fractures in their patients. Each reader’s diagnostic accuracy of fractures, with and without AI assistance, were compared against the gold standard. They also assessed the diagnostic performance of AI alone against the gold standard. AI assistance helped reduce missed fractures by 29% and increased readers’ sensitivity by 16%, and by 30% for exams with more than one fracture, while improving specificity by 5%. The researchers believe that AI can be a powerful tool to help radiologists and other physicians to improve diagnostic performance and increase efficiency, while potentially improving patient experience at the time of hospital or clinic visit.

“Our AI algorithm can quickly and automatically detect X-rays that are positive for fractures and flag those studies in the system so that radiologists can prioritize reading X-rays with positive fractures. The system also highlights regions of interest with bounding boxes around areas where fractures are suspected. This can potentially contribute to less waiting time at the time of hospital or clinic visit before patients can get a positive diagnosis of fracture,” explained corresponding Ali Guermazi, MD, PhD, chief of radiology at VA Boston Healthcare System and Professor of Radiology & Medicine at BUSM.

“Our study was focused on fracture diagnosis, but similar concept can be applied to other diseases and disorders. Our ongoing research interest is to how best to utilize AI to help human healthcare providers to improve patient care, rather than making AI replace human healthcare providers. Our study showed one such example,” he added.

Related Links:
Boston University School of Medicine 

Silver Member
X-Ray QA Meter
T3 AD Pro
New
Diagnostic Ultrasound System
MS1700C
Silver Member
Radiographic Positioning Equipment
2-Step Multiview Positioning Platform
New
Digital Radiography System
DigiEye 330

Print article

Channels

Ultrasound

view channel
Image: The addition of POC ultrasound can enhance first trimester obstetrical care (Photo courtesy of 123RF)

POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits

A new study has found that implementing point-of-care ultrasounds (POCUS) in clinics to assess the viability and gestational age of pregnancies in the first trimester improved care for pregnant patients... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–positron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.