Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Machine Learning Outperforms Clinical Experts in Classifying Hip Fractures from X-Rays

By MedImaging International staff writers
Posted on 14 Feb 2022

A new machine learning process designed to identify and classify hip fractures has been shown to outperform human clinicians.

Two convolutional neural networks (CNNs) developed at the University of Bath (Somerset, UK) were able to identify and classify hip fractures from X-rays with a 19% greater degree of accuracy and confidence than hospital-based clinicians. The research team set about creating the new process to help clinicians make hip fracture care more efficient and to support better patient outcomes. They used a total of 3,659 hip X-rays, classified by at least two experts, to train and test the neural networks, which achieved an overall accuracy of 92%, and 19% greater accuracy than hospital-based clinicians.

Hip fractures are a major cause of morbidity and mortality in the elderly, incurring high costs to health and social care. Classifying a fracture prior to surgery is crucial to help surgeons select the right interventions to treat the fracture and restore mobility and improve patient outcomes. The ability to swiftly, accurately, and reliably classify a fracture is key: delays to surgery of more than 48 hours can increase the risk of adverse outcomes and mortality. Fractures are divided into three classes – intracapsular, trochanteric, or subtrochanteric – depending on the part of the joint they occur in. Some treatments, which are determined by the fracture classification, can cost up to 4.5 times as much as others.

As important are longer-term patient outcomes: people who sustain a hip fracture have in the following year twice the age-specific mortality of the general population. So, the team says, the development of strategies to improve hip fracture management and their impact of morbidity, mortality and healthcare provision costs is a high priority. One critical issue affecting the use of diagnostic imaging is the mismatch between demand and resource. Rising demand on radiology departments often means they cannot report results in a timely manner.

“Machine learning methods and neural networks offer a new and powerful approach to automate diagnostics and outcome prediction, so this new technique we’ve shared has great potential,” said Prof Richie Gill, lead author of the paper and Co-Director of the Center for Therapeutic Innovation, says. “Despite fracture classification so strongly determining surgical treatment and hence patient outcomes, there is currently no standardized process as to who determines this classification in the UK – whether this is done by orthopedic surgeons or radiologists specializing in musculoskeletal disorders.”

Related Links:
University of Bath 

X-Ray Illuminator
X-Ray Viewbox Illuminators
NMUS & MSK Ultrasound
InVisus Pro
Portable X-ray Unit
AJEX140H
New
HF Stationary X-Ray Machine
TR20G
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get complete access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

MRI

view channel
Image: The AI tool can help interpret and assess how well treatments are working for MS patients (Photo courtesy of Shutterstock)

AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans

Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.