We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Tool Accurately Detects Normal and Abnormal Chest X-Rays

By MedImaging International staff writers
Posted on 09 Mar 2023
Print article
Image: An AI tool can accurately identify normal and abnormal chest X-rays in a clinical setting (Photo courtesy of Pexels)
Image: An AI tool can accurately identify normal and abnormal chest X-rays in a clinical setting (Photo courtesy of Pexels)

Chest X-rays are an essential diagnostic tool for identifying various conditions related to the heart and lungs, including cancer and chronic lung diseases. However, the interpretation of chest X-rays is a time-consuming and burdensome task for radiologists worldwide. Now, a new study has found that an artificial intelligence (AI) tool can accurately identify normal and abnormal chest X-rays in a clinical setting. The AI tool could greatly reduce the workload of radiologists and improve the efficiency of diagnosing and treating patients.

In the retrospective, multi-center study, researchers at Herlev and Gentofte Hospital (Copenhagen, Denmark) assessed the reliability of using an AI tool that was capable of identifying normal and abnormal chest X-rays. Using a commercially available AI tool, the researchers analyzed the chest X-rays of 1,529 patients from four hospitals in Denmark. The study included chest X-rays from emergency department patients, in-hospital patients and outpatients. The AI tool classified the X-rays as either “high-confidence normal” or “not high-confidence normal” as in normal and abnormal, respectively. The study employed two board-certified thoracic (chest) radiologists as the reference standard, and used a third radiologist in cases of disagreements, with all the three physicians remaining blinded to the AI results.

Out of the 429 chest X-rays classified as normal, the AI tool also classified 120, or 28%, as normal. This suggests that the AI tool could potentially safely automate these X-rays, or 7.8 % of all the X-rays. The AI tool also identified abnormal chest X-rays with 99.1% sensitivity. The researchers expect to conduct further studies toward a larger prospective implementation of the AI tool where the autonomously reported chest X-rays are still reviewed by radiologists. The AI tool did particularly well in identifying normal X-rays of the outpatient group at a rate of 11.6%, indicating that it can perform especially well in outpatient settings with a high prevalence of normal chest X-rays.

“The most surprising finding was just how sensitive this AI tool was for all kinds of chest disease,” said study co-author Louis Lind Plesner, M.D., from the Department of Radiology at the Herlev and Gentofte Hospital. “In fact, we could not find a single chest X-ray in our database where the algorithm made a major mistake. Furthermore, the AI tool had a sensitivity overall better than the clinical board-certified radiologists.”

Related Links:
Herlev and Gentofte Hospital

Ultrasound Imaging System
P12 Elite
Silver Member
X-Ray QA Meter
T3 AD Pro
New
Transducer Covers
Surgi Intraoperative Covers
40/80-Slice CT System
uCT 528

Print article

Channels

Ultrasound

view channel
Image: The addition of POC ultrasound can enhance first trimester obstetrical care (Photo courtesy of 123RF)

POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits

A new study has found that implementing point-of-care ultrasounds (POCUS) in clinics to assess the viability and gestational age of pregnancies in the first trimester improved care for pregnant patients... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–positron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.