We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Physician-Aided AI Enhances Detection of Acute Respiratory Distress Syndrome in Chest X-Rays

By MedImaging International staff writers
Posted on 14 Apr 2023
Print article
Image: Collaboration of AI with physicians can improve ARDS diagnostic accuracy (Photo courtesy of Freepik)
Image: Collaboration of AI with physicians can improve ARDS diagnostic accuracy (Photo courtesy of Freepik)

Acute respiratory distress syndrome (ARDS) is a highly fatal critical illness, with diagnosis often missed or delayed, resulting in patients not receiving evidence-based care. Researchers have now developed a deep learning algorithm to help doctors identify ARDS more quickly and reliably in chest X-rays.

In a new study, the research team University of Michigan (Ann Arbor, MI, USA) assessed the strengths and weaknesses of the AI model compared to expert physicians and investigated how both could work together to improve ARDS diagnosis and patient outcomes. The team used 414 chest X-rays from adult hospital patients with acute hypoxic respiratory failure, and had the AI model and a group of physicians with expertise in chest X-ray interpretation for ARDS detection work side by side. They evaluated overall performance in ARDS detection, accuracy based on X-ray interpretation difficulty, and the level of AI/physician certainty in their interpretations. The AI model demonstrated a higher overall performance in detecting ARDS findings than physicians. However, the researchers discovered that the AI model outperformed the physicians in interpreting less challenging chest X-rays, while physicians were better at reviewing more difficult ones. In rating their confidences in the chest X-ray interpretation, one was found to be less confident while the other performed better.

The team's analysis suggests that AI and physician expertise could complement each other, potentially reducing ARDS misdiagnosis rates. They tested several strategies in which an AI and physician could collaborate to achieve the best performance. One effective method involved having the AI system review the chest X-ray first and then deferring to physicians if it was uncertain. This approach allowed physicians to review a smaller subset of chest X-rays, reducing workload and allowing them to focus on more challenging cases. Such an approach could ultimately transform care delivery to ARDS patients in the intensive care unit (ICU).

“Understanding how to effectively operationalize AI systems in the ICU is really important,” said study senior author Dr. Michael Sjoding, Associate Director of the Weil Institute and Associate Professor of Pulmonary and Critical Care Medicine. “These systems are becoming more common, but there has not been a lot of work done so far to understand how to bring them to the bedside to help clinicians provide the best care. This work opens the door to a future where AI systems and human experts work together to provide excellent ARDS care to all patients.”

“Because medical decisions are often high stakes, we know that patients and clinicians likely won’t accept completely replacing human expertise with AI algorithms,” added Dr. Negar Farzaneh, a Weil Institute Research Investigator and Data Scientist, as well as lead author on the study. “However, strategies where the model complements a physician’s diagnosis, rather than replaces it, might be a more reasonable alternative. Our work suggests that these collaborations, when optimized, can result in higher diagnostic accuracy and enable patients to receive more consistent care.”

Related Links:
University of Michigan 

New
Ultrasound Table
General 3-Section Top EA Ultrasound Table
New
Digital X-Ray Detector Panel
Acuity G4
Opaque X-Ray Mobile Lead Barrier
2594M
New
Digital Radiography System
DigiEye 330

Print article

Channels

Ultrasound

view channel
Image: The addition of POC ultrasound can enhance first trimester obstetrical care (Photo courtesy of 123RF)

POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits

A new study has found that implementing point-of-care ultrasounds (POCUS) in clinics to assess the viability and gestational age of pregnancies in the first trimester improved care for pregnant patients... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–positron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.