We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Diagnoses Lung Disease by Analyzing X-Ray Images

By MedImaging International staff writers
Posted on 18 Apr 2023
Print article
Image: A neural network can search for lung pathologies on X-ray images (Photo courtesy of Freepik)
Image: A neural network can search for lung pathologies on X-ray images (Photo courtesy of Freepik)

Researchers have developed a neural network that can identify lung pathologies in X-ray images and generate concise verbal descriptions to accompany them. Currently, physicians spend several minutes compiling these captions, but the artificial intelligence (AI) solution reduces this time to around 30 seconds when significant text revision is not needed. In most cases, the radiologist simply needs to confirm the suggested diagnosis—such as fibrosis, an enlarged heart, or a suspected malignant tumor—or lack thereof.

The AI solution developed by researchers from Skoltech (Moscow, Russia) employs state-of-the-art machine vision and computational linguistics models, including GPT-3 small, a precursor to the widely popular GPT-3.5 and GPT-4 models accessible through the ChatGPT bot. The neural network is trained on data consisting of image-text pairs. Potential enhancements to the system include applying it to MRI and CT scans, integrating active learning, and combining it with another neural network to visually emphasize the areas of interest mentioned in the caption. Active learning refers to models that refine their predictions by considering the adjustments made by human reviewers.

“Regular models merely classify, but our neural network leverages advanced machine vision and computer linguistics models to automatically describe X-ray images in words,” said Skoltech research scientist Oleg Rogov. “We compiled our own radiological dictionary to make the model more accurate, specifically where radiological terms and their usage in texts are concerned. Naturally, we also put together a large integrated database of X-ray images for use as training data,” emphasizing that the neural network is only “aware” of those diagnoses that can actually manifest themselves on lung X-rays. The training set was balanced in terms of which diseases are represented.

Related Links:
Skoltech 

New
Diagnostic Ultrasound System
MS1700C
Silver Member
Radiographic Positioning Equipment
2-Step Multiview Positioning Platform
New
Transducer Covers
Surgi Intraoperative Covers
New
Mini C-arm Imaging System
Fluoroscan InSight FD

Print article

Channels

Ultrasound

view channel
Image: The addition of POC ultrasound can enhance first trimester obstetrical care (Photo courtesy of 123RF)

POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits

A new study has found that implementing point-of-care ultrasounds (POCUS) in clinics to assess the viability and gestational age of pregnancies in the first trimester improved care for pregnant patients... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–positron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.