We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Can Help Radiologists Avoid Missed Lung Cancer on Chest X-Ray Images

By MedImaging International staff writers
Posted on 20 Apr 2023
Print article
Image: A new study has found some common features of missed lung cancer cases on chest X-ray images (Photo courtesy of Freepik)
Image: A new study has found some common features of missed lung cancer cases on chest X-ray images (Photo courtesy of Freepik)

Chest radiography is the most frequently performed first-line imaging examination, often used for routine health checkups, preoperative evaluations, and lung cancer screenings in primary healthcare settings worldwide. However, false-negative or misleading chest radiography results are common, and unexpected abnormalities like lung cancer may be overlooked. Missing lung cancer can result in the disease progressing from an early-stage, potentially curable state to advanced-stage lung cancer, leading to poor patient outcomes. Now, a recent analysis has identified common features of missed lung cancer cases on chest X-ray images, suggesting that computer-aided detection systems or artificial intelligence could assist radiologists in avoiding such errors.

Researchers at Ramathibodi Hospital (Bangkok, Thailand) analyzed chest X-rays from 75 patients at a single institution, where initial signs of lung cancer were overlooked. They found common features of missed lung cancer cases, including the tumor's location, density, and any superimposed anatomical structures. According to the researchers, radiologists can prevent such errors by comparing the chest radiograph being read with previous examples, focusing on common blind spots, avoiding misidentification of lesions as normal structures, and using computer-aided detection systems or artificial intelligence.

The study retrospectively reviewed chest X-rays of 95 patients taken at least six months before a lung cancer diagnosis. The final sample consisted of 75 patients, with an even gender distribution and an average age of nearly 65 years. The median missed lung cancer size was approximately 16 mm. Most cases (75%) occurred in the outer two-thirds of the lung, followed by 68% in the middle/lower zones and 55% in the left lung. Common features included anatomical superimposition (88% of cases), density lower than the aortic knob (85%), partly or poorly defined margin (77%), irregular or spiculated border (61%), and rounded or oval shape (57%). Almost 47% of the missed cases had stage 3 or 4 lung cancer, and 41% of patients died.

The findings indicate that certain radiographic features of missed lung cancer, such as density, location, and superimposed anatomical structures, identified in the first positive chest radiograph were linked to advanced-stage lung cancer diagnosis and higher 3-year all-cause mortality. Delayed detection of missed lung cancer with such radiographic features on chest radiography may lead to worse outcomes. Hence, radiologists should pay special attention to and promptly report equivocal or borderline lesions in the upper zone or inner one-third of the lung, those with density equal to or greater than the aortic knob, or those superimposed by midline structures, pulmonary vessels, and ribs found incidentally on chest radiographs. The researchers hope that these findings will help radiologists avoid errors that can result in poor patient outcomes and death. Furthermore, computer-aided detection systems or artificial intelligence could improve radiologist performance and help detect smaller tumors, suggested the researchers.

Related Links:
Ramathibodi Hospital 

New
Digital Radiographic System
OMNERA 300M
New
Mammo 3D Performance Kits
Mammo 3D Performance Kits
40/80-Slice CT System
uCT 528
New
Ultrasound Table
General 3-Section Top EA Ultrasound Table

Print article

Channels

Ultrasound

view channel
Image: The addition of POC ultrasound can enhance first trimester obstetrical care (Photo courtesy of 123RF)

POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits

A new study has found that implementing point-of-care ultrasounds (POCUS) in clinics to assess the viability and gestational age of pregnancies in the first trimester improved care for pregnant patients... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–positron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.