We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Chest X-Ray AI System Assists in Checking Endotracheal Tube Placement

By MedImaging International staff writers
Posted on 05 Jun 2023
Print article
Image: UCLA researchers have demonstrated using AI to checking endotracheal tube placement (Photo courtesy of Freepik)
Image: UCLA researchers have demonstrated using AI to checking endotracheal tube placement (Photo courtesy of Freepik)

Chest X-rays (CXR) serve as a vital tool in intensive care units (ICU) for monitoring patients in critical condition who are on life-support devices. Endotracheal tubes (ETTs) are particularly used to ensure airway openness and facilitate lung ventilation. After intubation, a CXR is taken to confirm the tube's placement, which needs adjustment in around 15% of patients. High-capacity ICUs can produce hundreds of CXRs daily to verify tube placement. Given the massive volume of cases and the urgent need for intervention in case of ETT misplacement, ICU physicians often preliminarily review the CXR to instantly rectify a misplaced tube, rather than wait for radiology reads. However, due to the low visibility of tubes, overlapping anatomy and medical devices, and image quality concerns, evaluating tube placement can be a challenge without high-quality monitors and refined radiology interpretation skills.

In such a situation, an artificial intelligence (AI) system can provide dual decision support: ETT detection aid and position check alert. Despite the abundant literature on AI in radiology, few systems are routinely used in clinical practice. Many systems have limited experimental testing and seldom undergo evaluation in real-world applications. Earlier, researchers from UCLA (Los Angeles, CA, USA) researchers had developed and tested an AI system that could assist in verifying ETT placement and send alerts to physicians if the tip is incorrectly positioned. In a new study, this AI system was applied to check ETT placement in clinical practice and assess its real-world performance through user feedback in order to evaluate the possibility of wider usage. The clinical evaluation demonstrated commendable performance of the chest X-ray AI system and the findings were in line with previous experimental testing.

Over a span of 17 months in clinical practice, 214 CXR images were obtained for ETT placement checking with AI assistance by ICU physicians. The system, built on the SimpleMind Cognitive AI platform and integrated into a clinical workflow, automatically recognized the ETT and verified its position relative to the trachea and carina. The AI system's generated ETT overlay and misplacement alert messages were compared with radiology reports as the benchmark. A survey was also conducted to assess the AI system's utility in clinical practice. The alert messages signifying ETT misplacement or non-detection had a positive predictive value of 42% (21/50) and a negative predictive value of 98% (161/164) based on the radiology reports. In the survey, both radiologists and ICU physicians confirmed that they concurred with the AI outputs and found them beneficial.

Thus, the user survey results revealed a broad agreement with the AI outputs and the appropriateness of the alerts among both radiologists and ICU physicians. Regarding the system's utility, user ratings suggested that while the AI does not save time, it enhances their confidence and aligns with their workflow expectations for AI. The researchers concluded that the AI system's performance in real-world clinical usage was comparable to that observed in earlier experiments. Based on this and the physicians' survey results, the system can be further deployed, utilizing insights from this evaluation to refine the algorithm and enhance the AI system's quality assurance.

Related Links:
UCLA 

New
Digital Radiographic System
OMNERA 300M
New
Mini C-arm Imaging System
Fluoroscan InSight FD
New
Transducer Covers
Surgi Intraoperative Covers
New
Digital X-Ray Detector Panel
Acuity G4

Print article

Channels

Ultrasound

view channel
Image: The addition of POC ultrasound can enhance first trimester obstetrical care (Photo courtesy of 123RF)

POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits

A new study has found that implementing point-of-care ultrasounds (POCUS) in clinics to assess the viability and gestational age of pregnancies in the first trimester improved care for pregnant patients... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–positron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.