We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI X-Ray Tool Estimates Bone Mineral Density for Early Diagnosis of Osteoporosis

By MedImaging International staff writers
Posted on 13 Oct 2023
Print article
Image: An overview of the proposed method (Photo courtesy of NAIST)
Image: An overview of the proposed method (Photo courtesy of NAIST)

Osteoporosis is a common health issue that leads to low bone mineral density (BMD), making bones fragile and increasing the risk of fractures. Diagnosing this condition typically involves specialized and often costly tests like dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT). Because of these limitations, there's a need for more convenient and budget-friendly screening options. Recently, machine learning techniques that use X-ray images to estimate BMD have become more popular, but these often require extensive training data. Researchers have now come up with a machine learning method that offers a simpler way to screen for osteoporosis and other bone conditions early on.

Researchers at Nara Institute of Science and Technology (NAIST, Nara, Japan) have devised an innovative method that utilizes a type of machine learning known as the hierarchical learning framework. This method estimates BMD from standard X-ray images. The research team used original QCT scans from patients to create a virtual X-ray image of the bone area, aligning it precisely with actual patient X-rays. This data was then used in three distinct training phases to develop a final BMD estimation model. Initially, the model focused on breaking down X-ray images to create a virtual X-ray image of the bone area. In the final phase, the model was trained to recognize the relationship between these virtual X-ray images and BMD values.

This method was able to accurately estimate BMD using just a single X-ray image and demonstrated high effectiveness even with a couple of hundred datasets of CT and X-ray image pairs. The model not only provides the BMD value but also generates a virtual X-ray image that shows the distribution of bone density, making the results easier to understand. To assess its effectiveness compared to traditional methods like DXA and QCT, the researchers performed validation tests with real clinical data. The BMD values obtained through this new method showed a strong correlation with those derived from DXA and QCT, confirming its reliability.

Additional validation tests further demonstrated the robustness of this method. It produced consistent BMD estimates despite changes in patient positioning or different levels of image compression. The outcomes indicate that this new method has enormous potential for regular medical use. It offers a way to conveniently screen for osteoporosis and monitor treatment, enabling timely intervention and potentially improving the lives of those living with the condition.

"Osteoporosis is generally diagnosed at advanced stages once its symptoms become apparent. X-ray images can be valuable for opportunistic diagnosis, but efficiently extracting BMD information from these has been a significant challenge,” said Yoshito Otake from NAIST. “We hoped to solve this problem by using information derived from the computed tomography (CT) image in the training stage to develop a model for an accurate, efficient, and explainable BMD estimation solely from an X-ray image."

Related Links:
NAIST 

New
X-ray Diagnostic System
FDX Visionary-A
NMUS & MSK Ultrasound
InVisus Pro
New
Transducer Covers
Surgi Intraoperative Covers
New
Ultrasound Table
General 3-Section Top EA Ultrasound Table

Print article

Channels

Ultrasound

view channel
Image: The addition of POC ultrasound can enhance first trimester obstetrical care (Photo courtesy of 123RF)

POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits

A new study has found that implementing point-of-care ultrasounds (POCUS) in clinics to assess the viability and gestational age of pregnancies in the first trimester improved care for pregnant patients... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–positron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.