We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Improves Emergency-Related Chest X-Ray Interpretation by Non-Radiologist Practitioners

By MedImaging International staff writers
Posted on 30 Jan 2024
Print article
Image: AI has been shown to improve the performance of non-radiologists in chest imaging (Photo courtesy of 123RF)
Image: AI has been shown to improve the performance of non-radiologists in chest imaging (Photo courtesy of 123RF)

Chest X-rays are frequently used to decide if a disease needs immediate attention. However, making this determination is hardly easy. It requires experts to identify things like projection phenomena, superimpositions, and other complex representations in the images. This can be especially difficult for non-radiologists who do not regularly analyze diagnostic imaging. Nevertheless, in emergencies, they might need to make clinical decisions based on these images, often without a radiologist present. Previous research has looked into how AI can help interpret chest X-rays, aiming to make clinical processes more efficient and enhance patient care. In a new study, a team of researchers investigated whether an AI system, based on a convolutional neural network (CNN) and designed for interpreting chest X-rays, could be beneficial in emergency units (EUs). Their study showed that AI can indeed improve chest X-ray interpretation by non-radiologists, which can be particularly valuable in settings with limited resources.

In the study, researchers at the University of Munich Hospital in Germany evaluated an AI algorithm trained on both publicly available and expert-annotated chest imaging data. They examined 563 chest X-rays, each reviewed twice by three certified radiologists, three radiology residents, and three non-radiology residents with emergency unit experience. The study also involved testing non-radiologists on their ability to diagnose four specific conditions: pleural effusion, pneumothorax, pneumonia-like consolidations, and nodules. In its internal validation, the AI algorithm showed an impressive performance, with area under the curve (AUC) scores ranging from 0.95 for nodules to 0.995 for pleural effusion. The researchers noted that non-radiologist accuracy improved for all four conditions when using AI.

Furthermore, the study found that AI assistance notably enhanced agreement among non-radiologist readers in identifying pneumothorax, including a significant increase in the AUC score and improvements in both sensitivity and accuracy. Similarly, nodule detection saw the greatest improvement with AI help, marked by increases in sensitivity, accuracy, and AUC score. When the radiologists used the AI algorithm, they saw smaller improvements in performance, sensitivity, and accuracy, most of which were not significant. These results led the researchers to conclude that AI support could be particularly helpful for less experienced physicians in situations where experienced radiologists or emergency physicians are unavailable.

“In an emergency unit setting without 24/7 radiology coverage, the presented AI solution features an excellent clinical support tool to non-radiologists, similar to a second reader, and allows for a more accurate primary diagnosis and thus earlier therapy initiation,” stated the team.

Related Links:
University of Munich Hospital

Radiation Therapy Treatment Software Application
Elekta ONE
Silver Member
Radiographic Positioning Equipment
2-Step Multiview Positioning Platform
Silver Member
X-Ray QA Meter
T3 AD Pro
New
Portable X-ray Unit
AJEX140H

Print article

Channels

Ultrasound

view channel
Image: The addition of POC ultrasound can enhance first trimester obstetrical care (Photo courtesy of 123RF)

POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits

A new study has found that implementing point-of-care ultrasounds (POCUS) in clinics to assess the viability and gestational age of pregnancies in the first trimester improved care for pregnant patients... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–positron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.