We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Model Predicts 5-Year Breast Cancer Risk from Mammograms

By MedImaging International staff writers
Posted on 27 Mar 2024
Print article
:	Image: The AI model could be a valuable adjunct to human radiologists in breast cancer diagnoses and risk prediction (Photo courtesy of 123RF)
: Image: The AI model could be a valuable adjunct to human radiologists in breast cancer diagnoses and risk prediction (Photo courtesy of 123RF)

Approximately 13% of U.S. women, or one in every eight, are predicted to develop invasive breast cancer over their lifetime, with 1 in 39 women (3%) succumbing to the illness, according to the American Cancer Society. Mammography screening remains a vital tool for early breast cancer detection, offering the most effective treatment window. Regular mammogram appointments can significantly reduce breast cancer mortality risks. Nonetheless, the challenge remains in accurately predicting which individuals will contract breast cancer solely through screening methods. Mirai, an advanced deep learning algorithm, has been recognized for its ability to predict breast cancer risk, although its decision-making process remains largely unexplained, creating risks of overreliance and misdiagnoses by radiologists. Now, researchers have developed an innovative, interpretable artificial intelligence (AI) model capable of predicting the five-year risk of breast cancer based on the analysis of mammograms.

In the study, researchers at Duke University (Durham, NC, USA) conducted a comparative study utilizing their newly devised deep learning model, dubbed AsymMirai, against Mirai's one to five-year breast cancer risk assessments. AsymMirai inherits its deep learning "front end" from Mirai but incorporates an interpretable module called local bilateral dissimilarity, focusing on the tissue contrast between the left and right breasts. This study analyzed 210,067 mammograms from 81,824 patients from the EMory BrEast imaging Dataset (EMBED) spanning from January 2013 to December 2020, employing both the Mirai and AsymMirai algorithms.

The findings revealed that the simplified deep learning model, AsymMirai, nearly matched the performance of the state-of-the-art Mirai algorithm in predicting breast cancer risk from one to five years. Moreover, this study highlighted the significance of bilateral asymmetry as a vital clinical indicator, suggesting its potential as a novel imaging marker for assessing breast cancer risk. The transparency behind AsymMirai's decision-making process makes it an invaluable tool for radiologists, enhancing the accuracy of breast cancer diagnosis and risk prediction.

"We can, with surprisingly high accuracy, predict whether a woman will develop cancer in the next 1 to 5 years based solely on localized differences between her left and right breast tissue," said the study's lead author, Jon Donnelly, B.S., a Ph.D. student in the Department of Computer Science at Duke University. "This could have public impact because it could, in the not-too-distant future, affect how often women receive mammograms."

Related Links:
Duke University

Gold Member
X-Ray QA Meter
T3 AD Pro
New
Digital Radiography System
DigiEye 330
New
Diagnostic Ultrasound System
MS1700C
New
MRI System
Ingenia Prodiva 1.5T CS

Print article

Channels

Ultrasound

view channel
Image: A transparent ultrasound transducer-based photoacoustic-ultrasound fusion probe, along with images of a rat’s rectum and a pig’s esophagus (Photo courtesy of POSTECH)

Transparent Ultrasound Transducer for Photoacoustic and Ultrasound Endoscopy to Improve Diagnostic Accuracy

Endoscopic ultrasound is a commonly used tool in gastroenterology for cancer diagnosis; however, it provides limited contrast in soft tissues and only offers structural information, which reduces its diagnostic... Read more

General/Advanced Imaging

view channel
Image: The low-level and high-level attention maps for individuals in each GOLD stage for the I- and E-CNNs (Photo courtesy of Radiology: Cardiothoracic Imaging, doi.org/10.1148/ryct.240005)

Deep Learning Model Accurately Diagnoses COPD Using Single Inhalation Lung CT Scan

Chronic obstructive pulmonary disease (COPD) is a progressive lung condition that impairs breathing and is characterized by symptoms like shortness of breath and fatigue. It is the third leading cause... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.