We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Could Boost Clinical Adoption of Chest DDR

By MedImaging International staff writers
Posted on 01 Apr 2024
Print article
Image: AI could help chest DDR achieve clinical adoption (Photo courtesy of 123RF)
Image: AI could help chest DDR achieve clinical adoption (Photo courtesy of 123RF)

For diagnosing lung conditions, healthcare professionals typically rely on chest X-rays and pulmonary function tests (PFTs), which provide a snapshot of lung health. However, these traditional methods only offer a limited static assessment. Recent advancements have highlighted chest dynamic digital radiography (DDR) as a valuable tool for observing the lungs and diaphragm in motion, offering insights into respiratory function that static images are not capable of. Despite its potential benefits, the widespread adoption of DDR in clinical practice has been hampered by the manual, time-intensive analysis required and its unestablished correlation with standard PFT results. Now, the clinical use of chest DDR in patients with lung disorders could receive a significant boost with the development of artificial intelligence (AI) to perform the time-consuming analysis involved in the technology.

Researchers at Mount Sinai Hospital (New York, NY, USA) have developed a sophisticated AI "pipeline" utilizing convolutional neural networks (CNNs) to analyze sequences of DDR images of the lungs from patients. This approach aims to replicate the results of standard pulmonary function tests, effectively bridging the gap between DDR technology and conventional respiratory assessment methods. They created two specific CNNs for evaluating key aspects of lung movement in DDR sequences, using data from 55 patients representing a spectrum of lung health - from normal to those with obstructive and restrictive lung conditions. These CNNs were tasked with measuring lung areas in the images, essentially creating DDR-based pulmonary function tests (dPFTs). The researchers then undertook a comparative analysis of dPFTs against standard PFT measurements.

Their findings revealed statistically significant and strong correlations between the dPFT measurements and traditional PFT values, including total lung capacity, forced expiratory volume in one second, vital capacity, and functional residual capacity. These correlations indicate that dPFTs could potentially serve as alternatives to conventional PFTs, especially in scenarios where traditional tests are not feasible or available. DDR presents several advantages over conventional methods, including reduced radiation exposure compared to standard chest X-rays and the ability to provide valuable diagnostic information in situations where PFTs are inaccessible, such as for patients with neuromuscular disorders or during acute exacerbations of chronic obstructive pulmonary disease, concluded the researchers.

“Our study demonstrates robust dPFTs and PFTs correlations using an automated DDR analysis pipeline. This pipeline has potential to discern normal from abnormal physiology, suggesting dPFTs are valuable in assessing lung dynamics,” concluded the researchers.

Related Links:
Mount Sinai Hospital

New
Gold Member
X-Ray QA Meter
T3 AD Pro
LED-Based X-Ray Viewer
Dixion X-View
New
Computed Tomography System
Aquilion ONE / INSIGHT Edition
New
Digital X-Ray Detector Plate
Acuity DRe

Print article
Radcal

Channels

MRI

view channel
Image: Dr. Amar Kishan notes that MRI-guided approach enables the use of significantly narrower planning margins when delivering radiation (Photo courtesy of UCLA)

MRI-Guided Radiation Therapy Reduces Long-Term Side Effects in Prostate Cancer Patients

Stereotactic body radiotherapy (SBRT) is a standard treatment for localized prostate cancer. However, the side effects of this treatment can be severe and long-lasting, impacting a patient’s urinary, bowel,... Read more

Ultrasound

view channel
Image: The new software program uses artificial intelligence to read echocardiograms (Photo courtesy of Adobe Stock)

AI Image-Recognition Program Reads Echocardiograms Faster, Cuts Results Wait Time

An echocardiogram is a diagnostic imaging tool that provides valuable insights into heart structure and function, helping doctors to identify and treat various heart conditions. Now, a new study suggests... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.