We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Model Accurately Estimates Lung Function Using Chest X-Rays

By MedImaging International staff writers
Posted on 09 Jul 2024
Print article
Image: The AI model estimates lung function by observing radiographs, with lower values denoted by blue areas and higher values by red areas in the saliency maps (Photo courtesy of Osaka Metropolitan University)
Image: The AI model estimates lung function by observing radiographs, with lower values denoted by blue areas and higher values by red areas in the saliency maps (Photo courtesy of Osaka Metropolitan University)

Traditionally, lung function assessments are conducted using a spirometer, which requires patient cooperation. Patients must follow specific instructions for inhaling and exhaling into the device. This method becomes challenging when patients, such as infants or those with dementia, struggle to follow instructions or if the individual is bedridden. While clinicians rely on chest X-rays to diagnose conditions like tuberculosis and lung cancer, these images do not provide insights into lung functionality. To address these limitations, researchers have now developed an artificial intelligence (AI) model that is capable of estimating lung function from chest radiographs with high accuracy.

A research group from Osaka Metropolitan University (Osaka, Japan) trained, validated, and tested this AI model using over 140,000 chest radiographs collected over nearly two decades. They refined the AI model by comparing its estimations against actual spirometric data. The findings, published in The Lancet Digital Health, showed an exceptionally high agreement rate, with a Pearson’s correlation coefficient (r) exceeding 0.90, suggesting that this method holds substantial promise for clinical application. The AI model developed in this study could significantly expand options for pulmonary function assessment and especially benefit patients unable to perform traditional spirometry tests.

“Highly significant is the fact that just by using the static information from chest x-rays, our method suggests the possibility of accurately estimating lung function, which is normally evaluated through tests requiring the patients to exert physical energy,” said Associate Professor Daiju Ueda who led the research group. “This AI model was built through the cooperation of many people, from physicians, researchers, and technicians to patients at several institutions. If it can help lessen the burden on patients while also reducing medical costs, that would be a wonderful thing.”

Related Links:
Osaka Metropolitan University

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
40/80-Slice CT System
uCT 528
NMUS & MSK Ultrasound
InVisus Pro
New
Mini C-arm Imaging System
Fluoroscan InSight FD

Print article

Channels

MRI

view channel
Image: MRI microscopy of mouse and human pancreas with respective histology demonstrating ability of DTI maps to identify pre-malignant lesions (Photo courtesy of Bilreiro C, et al. Investigative Radiology, 2024)

Pioneering MRI Technique Detects Pre-Malignant Pancreatic Lesions for The First Time

Pancreatic cancer is the leading cause of cancer-related fatalities. When the disease is localized, the five-year survival rate is 44%, but once it has spread, the rate drops to around 3%.... Read more

Ultrasound

view channel
Image: A transparent ultrasound transducer-based photoacoustic-ultrasound fusion probe, along with images of a rat’s rectum and a pig’s esophagus (Photo courtesy of POSTECH)

Transparent Ultrasound Transducer for Photoacoustic and Ultrasound Endoscopy to Improve Diagnostic Accuracy

Endoscopic ultrasound is a commonly used tool in gastroenterology for cancer diagnosis; however, it provides limited contrast in soft tissues and only offers structural information, which reduces its diagnostic... Read more

General/Advanced Imaging

view channel
Image: The results of the eight-view 3D CT reconstruction from a public dataset (Photo courtesy of Medical Physics, doi.org/10.1002/mp.12345)

AI Model Reconstructs Sparse-View 3D CT Scan With Much Lower X-Ray Dose

While 3D CT scans provide detailed images of internal structures, the 1,000 to 2,000 X-rays captured from different angles during scanning can increase cancer risk, especially for vulnerable patients.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.