We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI-Powered Chest X-Ray Analysis Shows Promise in Clinical Practice

By MedImaging International staff writers
Posted on 27 Aug 2024
Print article
Image: Four examples of remarkable chest X-rays with missed critical findings (Photo courtesy of Radiology; https://doi.org/10.1148/radiol.240272)
Image: Four examples of remarkable chest X-rays with missed critical findings (Photo courtesy of Radiology; https://doi.org/10.1148/radiol.240272)

Recent advancements in artificial intelligence (AI) have fueled interest in computer-assisted diagnosis, driven by growing radiology workloads, a global shortage of radiologists, and the potential for burnout. Radiology departments often encounter a high volume of unremarkable chest X-rays, and AI has the potential to enhance efficiency by automating the reporting process. A new study has demonstrated that off-label use of a commercial AI tool is effective in excluding pathology with equal or fewer critical misses compared to radiologists.

Researchers from Herlev Gentofte Hospital (Copenhagen, Denmark) conducted a study to determine how often AI could accurately identify unremarkable chest X-rays without increasing diagnostic errors. This study analyzed radiology reports and data from 1,961 patients (median age, 72 years; 993 females), each with a single chest X-ray, collected from four Danish hospitals. Previous research indicated that AI tools could confidently exclude pathology in chest X-rays and autonomously generate a normal report. Yet, there was no established threshold for when AI tools should be considered reliable.

The study aimed to compare the severity of errors made by AI with those made by human radiologists to determine if AI errors were objectively worse. The AI tool calculated a "remarkableness" probability for each X-ray to determine its specificity at various sensitivity levels. Two chest radiologists, blind to AI assessments, categorized the X-rays as "remarkable" or "unremarkable" using established criteria. X-rays with missed findings by either AI or human reports were evaluated by another chest radiologist, who was unaware of who made the error, and classified the misses as critical, clinically significant, or insignificant.

The standard reference found 1,231 of the 1,961 X-rays (62.8%) remarkable and 730 (37.2%) unremarkable. The results, published in the journal Radiology, indicated that the AI tool successfully excluded pathology in 24.5% to 52.7% of unremarkable chest X-rays at sensitivities of 98% or higher, with fewer critical misses than those in the associated radiology reports. However, the mistakes made by AI were generally more severe clinically than those made by radiologists. The study suggested that AI could autonomously report over half of all normal chest X-rays, but emphasized the need for a prospective implementation study of the model at one of the suggested thresholds before recommending widespread use.

Related Links:
Herlev Gentofte Hospital

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Doppler String Phantom
CIRS Model 043A
New
X-ray Diagnostic System
FDX Visionary-A
New
Ultrasound Imaging System
P12 Elite

Print article
Radcal

Channels

MRI

view channel
Image: Dr. Amar Kishan notes that MRI-guided approach enables the use of significantly narrower planning margins when delivering radiation (Photo courtesy of UCLA)

MRI-Guided Radiation Therapy Reduces Long-Term Side Effects in Prostate Cancer Patients

Stereotactic body radiotherapy (SBRT) is a standard treatment for localized prostate cancer. However, the side effects of this treatment can be severe and long-lasting, impacting a patient’s urinary, bowel,... Read more

Ultrasound

view channel
Image: The new software program uses artificial intelligence to read echocardiograms (Photo courtesy of Adobe Stock)

AI Image-Recognition Program Reads Echocardiograms Faster, Cuts Results Wait Time

An echocardiogram is a diagnostic imaging tool that provides valuable insights into heart structure and function, helping doctors to identify and treat various heart conditions. Now, a new study suggests... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.