We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Bedside Monitoring of Brain Blood Flow in Stroke Victims

By MedImaging International staff writers
Posted on 26 Mar 2009
Print article
A new study describes the first successful demonstration of a noninvasive optical device to monitor cerebral blood flow in patients with acute stroke, a leading cause of disability and death.

Researchers at the University of Pennsylvania (Penn, Philadelphia, USA) have developed diffuse correlation spectroscopy (DCS), a technology for noninvasive transcranial measurement of cerebral blood flow (CBF) that can be hybridized with near-infrared spectroscopy (NIRS). As part of the development, the research then examined the utility of DCS and NIRS to measure the effects of head-of-bed (HOB) positioning of the patient on CBF at 30 degrees, 15 degrees, 0 degrees, -5 degrees, and 0 degrees angulations in patients with acute ischemic stroke affecting the frontal cortex, as well as in controls. HOB positioning was found to significantly alter CBF, oxy-hemoglobin (HbO2), and total-hemoglobin (THC) concentrations. Moreover, the researchers also found that the presence of an ipsilateral infarct was a significant effect for all parameters. The results were found to be consistent with the notion of impaired CBF autoregulation in the infarcted hemisphere. The study was published in the March 2009 issue of Optics Express.

"Our preliminary study demonstrates that blood flow changes can be reliably detected from stroke patients and also suggests that blood flow responses vary significantly from patient to patient," said lead author Turgut Durduran, Ph.D., of the High Energy group at the department of physics.

"Stroke is caused by a reduction in blood flow to the brain, yet brain blood flow is rarely if ever measured in stroke patients because most existing methods to measure blood flow require costly instrumentation that is not portable," said clinical collaborator John Detre, M.D., of the department of neurology in the School of Medicine. "The ability to quantify tissue hemodynamics at the bedside would provide new opportunities both to learn more about blood-flow changes in patients with acute stroke and to optimize interventions to increase blood flow for individual patients, potentially even allowing these interventions to be administered before the onset of new neurological symptoms."

The new noninvasive system uses embedded optical probes that are placed over major cortical blood vessels in each hemisphere of the brain. The probes use diffusing light to detect physiological changes such as blood flow, blood-oxygen saturation (SpO2), and hemoglobin concentration to inform clinicians about their treatments. The system uses lasers, photon-counting detectors, radio-frequency electronics, data processors, and a computer monitor to display user-friendly images of functional information to physicians and nurses.

Related Links:

University of Pennsylvania




New
Gold Member
X-Ray QA Meter
T3 AD Pro
Portable Color Doppler Ultrasound Scanner
DCU10
Radiology Software
DxWorks
New
40/80-Slice CT System
uCT 528

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: The scans revealed a new dimension of brain network organization in humans (Photo courtesy of Georgia State University/TReNDS Center Research)

New Approach Identifies Signatures of Chronic Brain Disorders Using fMRI Scans

Traditional studies of brain function, often using fMRI scans to detect brain activity patterns, have shown promise in identifying changes in individuals with chronic brain disorders like schizophrenia.... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.