We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Bedside Monitoring of Brain Blood Flow in Stroke Victims

By MedImaging International staff writers
Posted on 26 Mar 2009
Print article
A new study describes the first successful demonstration of a noninvasive optical device to monitor cerebral blood flow in patients with acute stroke, a leading cause of disability and death.

Researchers at the University of Pennsylvania (Penn, Philadelphia, USA) have developed diffuse correlation spectroscopy (DCS), a technology for noninvasive transcranial measurement of cerebral blood flow (CBF) that can be hybridized with near-infrared spectroscopy (NIRS). As part of the development, the research then examined the utility of DCS and NIRS to measure the effects of head-of-bed (HOB) positioning of the patient on CBF at 30 degrees, 15 degrees, 0 degrees, -5 degrees, and 0 degrees angulations in patients with acute ischemic stroke affecting the frontal cortex, as well as in controls. HOB positioning was found to significantly alter CBF, oxy-hemoglobin (HbO2), and total-hemoglobin (THC) concentrations. Moreover, the researchers also found that the presence of an ipsilateral infarct was a significant effect for all parameters. The results were found to be consistent with the notion of impaired CBF autoregulation in the infarcted hemisphere. The study was published in the March 2009 issue of Optics Express.

"Our preliminary study demonstrates that blood flow changes can be reliably detected from stroke patients and also suggests that blood flow responses vary significantly from patient to patient," said lead author Turgut Durduran, Ph.D., of the High Energy group at the department of physics.

"Stroke is caused by a reduction in blood flow to the brain, yet brain blood flow is rarely if ever measured in stroke patients because most existing methods to measure blood flow require costly instrumentation that is not portable," said clinical collaborator John Detre, M.D., of the department of neurology in the School of Medicine. "The ability to quantify tissue hemodynamics at the bedside would provide new opportunities both to learn more about blood-flow changes in patients with acute stroke and to optimize interventions to increase blood flow for individual patients, potentially even allowing these interventions to be administered before the onset of new neurological symptoms."

The new noninvasive system uses embedded optical probes that are placed over major cortical blood vessels in each hemisphere of the brain. The probes use diffusing light to detect physiological changes such as blood flow, blood-oxygen saturation (SpO2), and hemoglobin concentration to inform clinicians about their treatments. The system uses lasers, photon-counting detectors, radio-frequency electronics, data processors, and a computer monitor to display user-friendly images of functional information to physicians and nurses.

Related Links:

University of Pennsylvania




Silver Member
X-Ray QA Meter
T3 AD Pro
Wall Fixtures
MRI SERIES
New
Digital Radiography System
DigiEye 680
New
Ultrasound Table
Women’s Ultrasound EA Table

Print article

Channels

Ultrasound

view channel
Image: The model trained on echocardiography, can identify liver disease in people without symptoms (Photo courtesy of 123RF)

Artificial Intelligence Detects Undiagnosed Liver Disease from Echocardiograms

Echocardiography is a diagnostic procedure that uses ultrasound to visualize the heart and its associated structures. This imaging test is commonly used as an early screening method when doctors suspect... Read more

Nuclear Medicine

view channel
Image: [18F]3F4AP in a human subject after mild incomplete spinal cord injury (Photo courtesy of The Journal of Nuclear Medicine, DOI:10.2967/jnumed.124.268242)

Novel PET Technique Visualizes Spinal Cord Injuries to Predict Recovery

Each year, around 18,000 individuals in the United States experience spinal cord injuries, leading to severe mobility loss that often results in a lifelong battle to regain independence and improve quality of life.... Read more

General/Advanced Imaging

view channel
Image: This image presents heatmaps highlighting the areas LILAC focuses on when making predictions (Photo courtesy of Dr. Heejong Kim/Weill Cornell Medicine)

AI System Detects Subtle Changes in Series of Medical Images Over Time

Traditional approaches for analyzing longitudinal image datasets typically require significant customization and extensive pre-processing. For instance, in studies of the brain, researchers often begin... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.