We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




3D Printed Lenses Provide Sharper Ultrasound Images

By MedImaging International staff writers
Posted on 21 Dec 2016
Print article
Image: A 3D printed resin lens for ultrasound overcomes the limitations of glass (Photo courtesy of NTU).
Image: A 3D printed resin lens for ultrasound overcomes the limitations of glass (Photo courtesy of NTU).
An innovative ultrasound probe is equipped with superior resin transducer lenses manufactured using three-dimensional (3D) printing technology.

Developed by researchers at Nanyang Technological University (NTU; Singapore), the technology allows the printing of complex lens shapes for ultrasound probes that can be used to focus the resulting waves at multiple sites, or to shape waveforms with complex temporal and spatial shapes to a specific target. Current ultrasound design is limited by the optical characteristics of glass, which dictate cylindrical or spherical shaped lenses, thereby restricting the clarity of the imaging.

The arbitrarily shaped surfaces are made of polymers and printed with 3d printers, using three different polymer materials and a simplified deposition technique. The process involves painting layers of carbon-nanotube powder and polydimethylsiloxane. Together with a clear resin, pressure amplitudes of 300 bar peak positive can be obtained, and the flexibility of the polymer substrates allows complex waveforms to be generated. The study describing toe fabrication process and testing was published on October 29, 2016, in Applied Physics Letters.

“In most medical surgeries, precision and non-invasive diagnosis methods are crucial. This novel device not only determines the focus of the wave but also its shape, granting greater accuracy and control to medical practitioners,” said lead author Claus-Dieter Ohl, PhD, of the NTU School of Physical and Mathematical Sciences. “3D printing reinvents the manufacturing process, enabling the creation of unique and complex devices. In turn, the way medical devices are created needs to be rethought. This is an exciting discovery for the scientific community as it opens new doors for research and medical surgery.”

An ultrasonic probe consists of a piezoelectric element, backing material, an acoustic matching layer and an acoustic lens. The piezoelectric element generates the ultrasonic waves by repeatedly expanding and contracting; the backing material prevents excessive vibration in order to improve axial resolution; the acoustic matching layer improves impedance; and the acoustic lens prevents the ultrasonic waves from spreading and focuses them in the slice direction to improve the resolution.

Related Links:
Nanyang Technological University

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Portable Color Doppler Ultrasound Scanner
DCU10
New
Diagnostic Ultrasound System
MS1700C
New
Mobile Barrier
Tilted Mobile Leaded Barrier

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

MRI

view channel
Image: Artificial intelligence models can be trained to distinguish brain tumors from healthy tissue (Photo courtesy of 123RF)

AI Can Distinguish Brain Tumors from Healthy Tissue

Researchers have made significant advancements in artificial intelligence (AI) for medical applications. AI holds particular promise in radiology, where delays in processing medical images can often postpone... Read more

Nuclear Medicine

view channel
Image: Example of AI analysis of PET/CT images (Photo courtesy of Academic Radiology; DOI: 10.1016/j.acra.2024.08.043)

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer

Immunotherapy has significantly advanced the treatment of primary lung cancer, but it can sometimes lead to a severe side effect known as interstitial lung disease. This condition is characterized by lung... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.