We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




3D Printed Lenses Provide Sharper Ultrasound Images

By MedImaging International staff writers
Posted on 21 Dec 2016
Print article
Image: A 3D printed resin lens for ultrasound overcomes the limitations of glass (Photo courtesy of NTU).
Image: A 3D printed resin lens for ultrasound overcomes the limitations of glass (Photo courtesy of NTU).
An innovative ultrasound probe is equipped with superior resin transducer lenses manufactured using three-dimensional (3D) printing technology.

Developed by researchers at Nanyang Technological University (NTU; Singapore), the technology allows the printing of complex lens shapes for ultrasound probes that can be used to focus the resulting waves at multiple sites, or to shape waveforms with complex temporal and spatial shapes to a specific target. Current ultrasound design is limited by the optical characteristics of glass, which dictate cylindrical or spherical shaped lenses, thereby restricting the clarity of the imaging.

The arbitrarily shaped surfaces are made of polymers and printed with 3d printers, using three different polymer materials and a simplified deposition technique. The process involves painting layers of carbon-nanotube powder and polydimethylsiloxane. Together with a clear resin, pressure amplitudes of 300 bar peak positive can be obtained, and the flexibility of the polymer substrates allows complex waveforms to be generated. The study describing toe fabrication process and testing was published on October 29, 2016, in Applied Physics Letters.

“In most medical surgeries, precision and non-invasive diagnosis methods are crucial. This novel device not only determines the focus of the wave but also its shape, granting greater accuracy and control to medical practitioners,” said lead author Claus-Dieter Ohl, PhD, of the NTU School of Physical and Mathematical Sciences. “3D printing reinvents the manufacturing process, enabling the creation of unique and complex devices. In turn, the way medical devices are created needs to be rethought. This is an exciting discovery for the scientific community as it opens new doors for research and medical surgery.”

An ultrasonic probe consists of a piezoelectric element, backing material, an acoustic matching layer and an acoustic lens. The piezoelectric element generates the ultrasonic waves by repeatedly expanding and contracting; the backing material prevents excessive vibration in order to improve axial resolution; the acoustic matching layer improves impedance; and the acoustic lens prevents the ultrasonic waves from spreading and focuses them in the slice direction to improve the resolution.

Related Links:
Nanyang Technological University

Ultrasound Table
Women’s Ultrasound EA Table
3T MRI Scanner
MAGNETOM Cima.X
Digital Radiographic System
OMNERA 300M
Diagnostic Ultrasound System
MS1700C

Print article

Channels

MRI

view channel
Image: The AI tool can help interpret and assess how well treatments are working for MS patients (Photo courtesy of Shutterstock)

AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans

Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more

Nuclear Medicine

view channel
Image: In vivo imaging of U-87 MG xenograft model with varying mass doses of 89Zr-labeled KLG-3 or isotype control (Photo courtesy of L Gajecki et al.; doi.org/10.2967/jnumed.124.268762)

Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors

Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.